Spaces:
Runtime error
Runtime error
import streamlit as st | |
import torch | |
from transformers import pipeline, set_seed | |
from transformers import AutoTokenizer | |
from PIL import ( | |
ImageFont, | |
) | |
import os | |
import re | |
import random | |
import textwrap | |
from examples import EXAMPLES | |
import dummy | |
import meta | |
from utils import ext | |
from utils.api import generate_cook_image | |
from utils.draw import generate_food_with_logo_image, generate_recipe_image | |
from utils.st import ( | |
remote_css, | |
local_css, | |
) | |
from utils.utils import ( | |
load_image_from_url, | |
load_image_from_local, | |
image_to_base64, | |
pure_comma_separation | |
) | |
class TextGeneration: | |
def __init__(self): | |
self.debug = False | |
self.dummy_outputs = dummy.recipes | |
self.tokenizer = None | |
self.generator = None | |
self.api_ids = [] | |
self.api_keys = [] | |
self.api_test = 2 | |
self.task = "text2text-generation" | |
self.model_name_or_path = "flax-community/t5-recipe-generation" | |
self.color_frame = "#ffffff" | |
self.main_frame = "asset/frame/recipe-bg.png" | |
self.no_food = "asset/frame/no_food.png" | |
self.logo_frame = "asset/frame/logo.png" | |
self.chef_frames = { | |
"scheherazade": "asset/frame/food-image-logo-bg-s.png", | |
"giovanni": "asset/frame/food-image-logo-bg-g.png", | |
} | |
self.fonts = { | |
"title": ImageFont.truetype("asset/fonts/Poppins-Bold.ttf", 70), | |
"sub_title": ImageFont.truetype("asset/fonts/Poppins-Medium.ttf", 30), | |
"body_bold": ImageFont.truetype("asset/fonts/Montserrat-Bold.ttf", 22), | |
"body": ImageFont.truetype("asset/fonts/Montserrat-Regular.ttf", 18), | |
} | |
set_seed(42) | |
def _skip_special_tokens_and_prettify(self, text): | |
recipe_maps = {"<sep>": "--", "<section>": "\n"} | |
recipe_map_pattern = "|".join(map(re.escape, recipe_maps.keys())) | |
text = re.sub( | |
recipe_map_pattern, | |
lambda m: recipe_maps[m.group()], | |
re.sub("|".join(self.tokenizer.all_special_tokens), "", text) | |
) | |
data = {"title": "", "ingredients": [], "directions": []} | |
for section in text.split("\n"): | |
section = section.strip() | |
if section.startswith("title:"): | |
data["title"] = " ".join( | |
[w.strip().capitalize() for w in section.replace("title:", "").strip().split() if w.strip()] | |
) | |
elif section.startswith("ingredients:"): | |
data["ingredients"] = [s.strip() for s in section.replace("ingredients:", "").split('--')] | |
elif section.startswith("directions:"): | |
data["directions"] = [s.strip() for s in section.replace("directions:", "").split('--')] | |
else: | |
pass | |
return data | |
def load_pipeline(self): | |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path) | |
self.generator = pipeline(self.task, model=self.model_name_or_path, tokenizer=self.model_name_or_path) | |
def load_api(self): | |
app_ids = os.getenv("EDAMAM_APP_ID") | |
app_ids = app_ids.split(",") if app_ids else [] | |
app_keys = os.getenv("EDAMAM_APP_KEY") | |
app_keys = app_keys.split(",") if app_keys else [] | |
if len(app_ids) != len(app_keys): | |
self.api_ids = [] | |
self.api_keys = [] | |
self.api_ids = app_ids | |
self.api_keys = app_keys | |
def load(self): | |
self.load_api() | |
if not self.debug: | |
self.load_pipeline() | |
def prepare_frame(self, recipe, chef_name): | |
frame_path = self.chef_frames[chef_name.lower()] | |
food_logo = generate_food_with_logo_image(frame_path, self.logo_frame, recipe["image"]) | |
frame = generate_recipe_image( | |
recipe, | |
self.main_frame, | |
food_logo, | |
self.fonts, | |
bg_color="#ffffff" | |
) | |
return frame | |
def generate(self, items, generation_kwargs): | |
recipe = self.dummy_outputs[0] | |
# recipe = self.dummy_outputs[random.randint(0, len(self.dummy_outputs) - 1)] | |
if not self.debug: | |
generation_kwargs["num_return_sequences"] = 1 | |
# generation_kwargs["return_full_text"] = False | |
generation_kwargs["return_tensors"] = True | |
generation_kwargs["return_text"] = False | |
generated_ids = self.generator( | |
items, | |
**generation_kwargs, | |
)[0]["generated_token_ids"] | |
recipe = self.tokenizer.decode(generated_ids, skip_special_tokens=False) | |
recipe = self._skip_special_tokens_and_prettify(recipe) | |
if self.api_ids and self.api_keys and len(self.api_ids) == len(self.api_keys): | |
test = 0 | |
for i in range(len(self.api_keys)): | |
if test > self.api_test: | |
recipe["image"] = None | |
break | |
image = generate_cook_image(recipe["title"].lower(), self.api_ids[i], self.api_keys[i]) | |
test += 1 | |
if image: | |
recipe["image"] = image | |
break | |
else: | |
recipe["image"] = None | |
return recipe | |
def generate_frame(self, recipe, chef_name): | |
return self.prepare_frame(recipe, chef_name) | |
def load_text_generator(): | |
generator = TextGeneration() | |
generator.load() | |
return generator | |
chef_top = { | |
"max_length": 512, | |
"min_length": 64, | |
"no_repeat_ngram_size": 3, | |
"do_sample": True, | |
"top_k": 60, | |
"top_p": 0.95, | |
"num_return_sequences": 1 | |
} | |
chef_beam = { | |
"max_length": 512, | |
"min_length": 64, | |
"no_repeat_ngram_size": 3, | |
"early_stopping": True, | |
"num_beams": 5, | |
"length_penalty": 1.5, | |
"num_return_sequences": 1 | |
} | |
def main(): | |
st.set_page_config( | |
page_title="Chef Transformer", | |
page_icon="🍲", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
generator = load_text_generator() | |
# if hasattr(st, "session_state"): | |
# if 'get_random_frame' not in st.session_state: | |
# st.session_state.get_random_frame = generator.frames[0] | |
# else: | |
# get_random_frame = generator.frames[0] | |
remote_css("https://fonts.googleapis.com/css2?family=Montserrat:wght@400;600&family=Poppins:wght@600&display=swap") | |
local_css("asset/css/style.css") | |
col1, col2 = st.beta_columns([6, 4]) | |
with col2: | |
st.image(load_image_from_local("asset/images/chef-transformer-transparent.png"), width=300) | |
st.markdown(meta.SIDEBAR_INFO, unsafe_allow_html=True) | |
with st.beta_expander("Where did this story start?", expanded=True): | |
st.markdown(meta.STORY, unsafe_allow_html=True) | |
with col1: | |
st.markdown(meta.HEADER_INFO, unsafe_allow_html=True) | |
st.markdown(meta.CHEF_INFO, unsafe_allow_html=True) | |
chef = st.selectbox("Choose your chef", index=0, options=["Chef Scheherazade", "Chef Giovanni"]) | |
prompts = list(EXAMPLES.keys()) + ["Custom"] | |
prompt = st.selectbox( | |
'Examples (select from this list)', | |
prompts, | |
# index=len(prompts) - 1, | |
index=0 | |
) | |
if prompt == "Custom": | |
prompt_box = "" | |
else: | |
prompt_box = EXAMPLES[prompt] | |
items = st.text_area( | |
'Insert your food items here (separated by `,`): ', | |
pure_comma_separation(prompt_box, return_list=False), | |
) | |
items = pure_comma_separation(items, return_list=False) | |
entered_items = st.empty() | |
recipe_button = st.button('Get Recipe!') | |
st.markdown( | |
"<hr />", | |
unsafe_allow_html=True | |
) | |
if recipe_button: | |
# if hasattr(st, "session_state"): | |
# st.session_state.get_random_frame = generator.frames[random.randint(0, len(generator.frames)) - 1] | |
# else: | |
# get_random_frame = generator.frames[random.randint(0, len(generator.frames)) - 1] | |
entered_items.markdown("**Generate recipe for:** " + items) | |
with st.spinner("Generating recipe..."): | |
if not isinstance(items, str) or not len(items) > 1: | |
entered_items.markdown( | |
f"**{chef}** would like to know what ingredients do you like to use in " | |
f"your food? " | |
) | |
else: | |
gen_kw = chef_top if chef == "Chef Scheherazade" else chef_beam | |
generated_recipe = generator.generate(items, gen_kw) | |
title = generated_recipe["title"] | |
food_image = generated_recipe["image"] | |
food_image = load_image_from_url(food_image, rgba_mode=True, default_image=generator.no_food) | |
food_image = image_to_base64(food_image) | |
ingredients = ext.ingredients( | |
generated_recipe["ingredients"], | |
pure_comma_separation(items, return_list=True) | |
) | |
# ingredients = [textwrap.fill(item, 10).replace("\n", "<br /> ") for item in ingredients] | |
directions = ext.directions(generated_recipe["directions"]) | |
# directions = [textwrap.fill(item, 70).replace("\n", "<br /> ") for item in directions] | |
generated_recipe["by"] = chef | |
r1, r2 = st.beta_columns([6, 2]) | |
with r2: | |
# st.write(st.session_state.get_random_frame) | |
# if hasattr(st, "session_state"): | |
# recipe_post = generator.generate_frame(generated_recipe, st.session_state.get_random_frame) | |
# else: | |
# recipe_post = generator.generate_frame(generated_recipe, get_random_frame) | |
recipe_post = generator.generate_frame(generated_recipe, chef.split()[-1]) | |
st.image( | |
recipe_post, | |
# width=500, | |
caption="Save image and share on your social media", | |
use_column_width="auto", | |
output_format="PNG" | |
) | |
with r1: | |
st.markdown( | |
" ".join([ | |
"<div class='r-text-recipe'>", | |
"<div class='food-title'>", | |
f"<img src='{food_image}' />", | |
f"<h2 class='font-title text-bold'>{title}</h2>", | |
"</div>", | |
'<div class="divider"><div class="divider-mask"></div></div>', | |
"<h3 class='ingredients font-body text-bold'>Ingredients</h3>", | |
"<ul class='ingredients-list font-body'>", | |
" ".join([f'<li>{item}</li>' for item in ingredients]), | |
"</ul>", | |
"<h3 class='directions font-body text-bold'>Directions</h3>", | |
"<ol class='ingredients-list font-body'>", | |
" ".join([f'<li>{item}</li>' for item in directions]), | |
"</ol>", | |
"</div>" | |
]), | |
unsafe_allow_html=True | |
) | |
if __name__ == '__main__': | |
main() | |