DietNerf-Demo / app.py
hassiahk's picture
Added latest models for Hotdog and Drums
3ea7c11
raw
history blame
5.25 kB
import os
import builtins
import math
import json
import streamlit as st
import gdown
from demo.src.models import load_trained_model
from demo.src.utils import render_predict_from_pose, predict_to_image
st.set_page_config(page_title="DietNeRF")
with open("config.json") as f:
cfg = json.loads(f.read())
MODEL_DIR = "models"
def select_model():
obj_select = st.selectbox("Select a Scene", ("Mic", "Chair", "Lego", "Ship", "Hotdog", "Drums"))
DIET_NERF_MODEL_NAME = cfg[obj_select]["DIET_NERF_MODEL_NAME"]
DIET_NERF_FILE_ID = cfg[obj_select]["DIET_NERF_FILE_ID"]
NERF_MODEL_NAME = cfg[obj_select]["NERF_MODEL_NAME"]
NERF_FILE_ID = cfg[obj_select]["NERF_FILE_ID"]
return DIET_NERF_MODEL_NAME, DIET_NERF_FILE_ID, NERF_MODEL_NAME, NERF_FILE_ID
st.title("DietNeRF")
caption = (
"`DietNeRF` achieves state-of-the-art few-shot learning capacity in 3D model reconstruction. "
"Thanks to the 2D supervision by `CLIP (aka. Semantic Consisteny Loss)`, "
"it can render novel and challenging views with `ONLY 8 training images`, "
"**outperforming** original [NeRF](https://www.matthewtancik.com/nerf)!"
)
st.markdown(caption)
st.markdown("")
DIET_NERF_MODEL_NAME, DIET_NERF_FILE_ID, NERF_MODEL_NAME, NERF_FILE_ID = select_model()
@st.cache(show_spinner=False)
def download_diet_nerf_model():
os.makedirs(MODEL_DIR, exist_ok=True)
diet_nerf_model_path = os.path.join(MODEL_DIR, DIET_NERF_MODEL_NAME)
url = f"https://drive.google.com/uc?id={DIET_NERF_FILE_ID}"
gdown.download(url, diet_nerf_model_path, quiet=False)
print(f"Model downloaded from google drive: {diet_nerf_model_path}")
def download_nerf_model():
nerf_model_path = os.path.join(MODEL_DIR, NERF_MODEL_NAME)
url = f"https://drive.google.com/uc?id={NERF_FILE_ID}"
gdown.download(url, nerf_model_path, quiet=False)
print(f"Model downloaded from google drive: {nerf_model_path}")
@st.cache(show_spinner=False, allow_output_mutation=True)
def fetch_diet_nerf_model():
model, state = load_trained_model(MODEL_DIR, DIET_NERF_MODEL_NAME)
return model, state
@st.cache(show_spinner=False, allow_output_mutation=True)
def fetch_nerf_model():
model, state = load_trained_model(MODEL_DIR, NERF_MODEL_NAME)
return model, state
diet_nerf_model_path = os.path.join(MODEL_DIR, DIET_NERF_MODEL_NAME)
if not os.path.isfile(diet_nerf_model_path):
download_diet_nerf_model()
nerf_model_path = os.path.join(MODEL_DIR, NERF_MODEL_NAME)
if not os.path.isfile(nerf_model_path):
download_nerf_model()
diet_nerf_model, diet_nerf_state = fetch_diet_nerf_model()
nerf_model, nerf_state = fetch_nerf_model()
pi = math.pi
st.sidebar.markdown(
"""
<style>
.aligncenter {
text-align: center;
}
</style>
<p class="aligncenter">
<img src="https://user-images.githubusercontent.com/77657524/126361638-4aad58e8-4efb-4fc5-bf78-f53d03799e1e.png" width="420" height="400"/>
</p>
""",
unsafe_allow_html=True,
)
st.sidebar.markdown(
"""
<p style='text-align: center'>
<a href="https://github.com/codestella/putting-nerf-on-a-diet" target="_blank">GitHub</a> | <a href="https://www.notion.so/DietNeRF-Putting-NeRF-on-a-Diet-4aeddae95d054f1d91686f02bdb74745" target="_blank">Project Report</a>
</p>
""",
unsafe_allow_html=True,
)
st.sidebar.header("SELECT YOUR VIEW DIRECTION")
theta = st.sidebar.slider(
"Theta", min_value=-pi, max_value=pi, step=0.5, value=0.0, help="Rotational angle in Horizontal direction"
)
phi = st.sidebar.slider(
"Phi", min_value=0.0, max_value=0.5 * pi, step=0.1, value=1.0, help="Rotational angle in Vertical direction"
)
radius = st.sidebar.slider(
"Radius", min_value=2.0, max_value=6.0, step=1.0, value=3.0, help="Distance between object and the viewer"
)
st.markdown("")
with st.spinner("Rendering View..."):
with st.spinner("It may take around 1-2 mins. In the meantime, why don't you take a look at our report if you haven't already :)"):
dn_pred_color, _ = render_predict_from_pose(diet_nerf_state, theta, phi, radius)
dn_im = predict_to_image(dn_pred_color)
dn_w, _ = dn_im.size
dn_new_w = int(2 * dn_w)
dn_im = dn_im.resize(size=(dn_new_w, dn_new_w))
n_pred_color, _ = render_predict_from_pose(nerf_state, theta, phi, radius)
n_im = predict_to_image(n_pred_color)
n_w, _ = n_im.size
n_new_w = int(2 * n_w)
n_im = n_im.resize(size=(n_new_w, n_new_w))
diet_nerf_col, nerf_col = st.beta_columns([1, 1])
diet_nerf_col.markdown(
"""<h4 style='text-align: center'>DietNeRF</h4>""", unsafe_allow_html=True
)
diet_nerf_col.image(dn_im, use_column_width=True)
nerf_col.markdown(
"""<h4 style='text-align: center'>NeRF</h4>""", unsafe_allow_html=True
)
nerf_col.image(n_im, use_column_width=True)
st.markdown(
"> πŸ“’ NOTE: The views may look similar to you but see the "
"[Experimental Results](https://www.notion.so/DietNeRF-Putting-NeRF-on-a-Diet-4aeddae95d054f1d91686f02bdb74745#0f6bc8f1008d4765b9b4635999626d4b) "
"section in our report to get a detailed comparison of differences between `DietNeRF` and `NeRF`."
)