flatindo's picture
Update app.py
acb5796
from diffusers import (
StableDiffusionPipeline,
DPMSolverMultistepScheduler,
DiffusionPipeline,
)
import gradio as gr
import torch
from PIL import Image
import time
import psutil
import random
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
start_time = time.time()
current_steps = 25
SAFETY_CHECKER = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=torch.float16)
UPSCALER = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16)
UPSCALER.to("cpu")
UPSCALER.enable_xformers_memory_efficient_attention()
class Model:
def __init__(self, name, path=""):
self.name = name
self.path = path
if path != "":
self.pipe_t2i = StableDiffusionPipeline.from_pretrained(
path, torch_dtype=torch.float16, safety_checker=SAFETY_CHECKER
)
self.pipe_t2i.scheduler = DPMSolverMultistepScheduler.from_config(
self.pipe_t2i.scheduler.config
)
else:
self.pipe_t2i = None
models = [
#Model("Stable Diffusion v1-4", "CompVis/stable-diffusion-v1-4"),
Model("Stable Diffusion v1-5", "runwayml/stable-diffusion-v1-5"),
Model("anything-v4.0", "xyn-ai/anything-v4.0"),
]
MODELS = {m.name: m for m in models}
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
def error_str(error, title="Error"):
return (
f"""#### {title}
{error}"""
if error
else ""
)
def inference(
prompt,
neg_prompt,
guidance,
steps,
seed,
model_name,
):
print(psutil.virtual_memory()) # print memory usage
if seed == 0:
seed = random.randint(0, 2147483647)
generator = torch.Generator("cuda").manual_seed(seed)
try:
low_res_image, up_res_image = txt_to_img(
model_name,
prompt,
neg_prompt,
guidance,
steps,
generator,
)
return low_res_image, up_res_image, f"Done. Seed: {seed}",
except Exception as e:
return None, None, error_str(e)
def txt_to_img(
model_name,
prompt,
neg_prompt,
guidance,
steps,
generator,
):
pipe = MODELS[model_name].pipe_t2i
if torch.cuda.is_available():
pipe = pipe.to("cpu")
pipe.enable_xformers_memory_efficient_attention()
low_res_latents = pipe(
prompt,
negative_prompt=neg_prompt,
num_inference_steps=int(steps),
guidance_scale=guidance,
generator=generator,
output_type="latent",
).images
with torch.no_grad():
low_res_image = pipe.decode_latents(low_res_latents)
low_res_image = pipe.numpy_to_pil(low_res_image)
up_res_image = UPSCALER(
prompt=prompt,
negative_prompt=neg_prompt,
image=low_res_latents,
num_inference_steps=20,
guidance_scale=0,
generator=generator,
).images
pipe.to("cpu")
torch.cpu.empty_cache()
return low_res_image[0], up_res_image[0]
def replace_nsfw_images(results):
for i in range(len(results.images)):
if results.nsfw_content_detected[i]:
results.images[i] = Image.open("nsfw.png")
return results.images
with gr.Blocks(css="style.css") as demo:
gr.HTML(
f"""
<div class="finetuned-diffusion-div">
<div style="text-align: center">
<h1>Anything v4 model + <a href="https://huggingface.co/stabilityai/sd-x2-latent-upscaler">Stable Diffusion Latent Upscaler</a></h1>
<p>
Demo for the <a href="https://huggingface.co/andite/anything-v4.0">Anything v4</a> model hooked with the ultra-fast <a href="https://huggingface.co/stabilityai/sd-x2-latent-upscaler">Latent Upscaler</a>
</p>
</div>
<!--
<p>To skip the queue, you can duplicate this Space<br>
<a style="display:inline-block" href="https://huggingface.co/spaces/patrickvonplaten/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
-->
</div>
"""
)
with gr.Column(scale=100):
with gr.Group(visible=False):
model_name = gr.Dropdown(
label="Model",
choices=[m.name for m in models],
value=models[0].name,
visible=False
)
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
with gr.Column():
prompt = gr.Textbox(
label="Enter your prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
elem_id="prompt-text-input",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
neg_prompt = gr.Textbox(
label="Enter your negative prompt",
show_label=False,
max_lines=1,
placeholder="Enter a negative prompt",
elem_id="negative-prompt-text-input",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
generate = gr.Button("Generate image").style(
margin=False,
rounded=(False, True, True, False),
full_width=False,
)
with gr.Accordion("Advanced Options", open=False):
with gr.Group():
with gr.Row():
guidance = gr.Slider(
label="Guidance scale", value=7.5, maximum=15
)
steps = gr.Slider(
label="Steps",
value=current_steps,
minimum=2,
maximum=75,
step=1,
)
seed = gr.Slider(
0, 2147483647, label="Seed (0 = random)", value=0, step=1
)
with gr.Column(scale=100):
with gr.Row():
with gr.Column(scale=75):
up_res_image = gr.Image(label="Upscaled 1024px Image", shape=(1024, 512))
with gr.Column(scale=25):
low_res_image = gr.Image(label="Original 512px Image", shape=(512, 512))
error_output = gr.Markdown()
inputs = [
prompt,
neg_prompt,
guidance,
steps,
seed,
model_name,
]
outputs = [low_res_image, up_res_image, error_output]
prompt.submit(inference, inputs=inputs, outputs=outputs)
generate.click(inference, inputs=inputs, outputs=outputs)
ex = gr.Examples(
[
["a mecha robot in a favela", "low quality", 7.5, 25, 33, models[0].name],
["the spirit of a tamagotchi wandering in the city of Paris", "low quality, bad render", 7.5, 50, 85, models[0].name],
],
inputs=[prompt, neg_prompt, guidance, steps, seed, model_name],
outputs=outputs,
fn=inference,
cache_examples=True,
)
ex.dataset.headers = [""]
gr.HTML(
"""
<div style="border-top: 1px solid #303030;">
<br>
<p>Space by 🤗 Hugging Face, models by Stability AI, andite, linaqruf and others ❤️</p>
<p>This space uses the <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver++</a> sampler by <a href="https://arxiv.org/abs/2206.00927">Cheng Lu, et al.</a>.</p>
<p>This is a Demo Space For:<br>
<a href="https://huggingface.co/stabilityai/sd-x2-latent-upscaler">Stability AI's Latent Upscaler</a>
</div>
"""
)
print(f"Space built in {time.time() - start_time:.2f} seconds")
demo.queue(concurrency_count=1)
demo.launch()