Spaces:
Running
on
L4
Running
on
L4
flamehaze1115
commited on
Commit
·
651aae3
1
Parent(s):
649375f
Delete mvdiffusion/data/objaverse_dataset.py
Browse files
mvdiffusion/data/objaverse_dataset.py
DELETED
@@ -1,608 +0,0 @@
|
|
1 |
-
from typing import Dict
|
2 |
-
import numpy as np
|
3 |
-
from omegaconf import DictConfig, ListConfig
|
4 |
-
import torch
|
5 |
-
from torch.utils.data import Dataset
|
6 |
-
from pathlib import Path
|
7 |
-
import json
|
8 |
-
from PIL import Image
|
9 |
-
from torchvision import transforms
|
10 |
-
from einops import rearrange
|
11 |
-
from typing import Literal, Tuple, Optional, Any
|
12 |
-
import cv2
|
13 |
-
import random
|
14 |
-
|
15 |
-
import json
|
16 |
-
import os, sys
|
17 |
-
import math
|
18 |
-
|
19 |
-
import PIL.Image
|
20 |
-
from .normal_utils import trans_normal, normal2img, img2normal
|
21 |
-
import pdb
|
22 |
-
|
23 |
-
def shift_list(lst, n):
|
24 |
-
length = len(lst)
|
25 |
-
n = n % length # Ensure n is within the range of the list length
|
26 |
-
return lst[-n:] + lst[:-n]
|
27 |
-
|
28 |
-
|
29 |
-
class ObjaverseDataset(Dataset):
|
30 |
-
def __init__(self,
|
31 |
-
root_dir: str,
|
32 |
-
num_views: int,
|
33 |
-
bg_color: Any,
|
34 |
-
img_wh: Tuple[int, int],
|
35 |
-
object_list: str,
|
36 |
-
groups_num: int=1,
|
37 |
-
validation: bool = False,
|
38 |
-
random_views: bool = False,
|
39 |
-
num_validation_samples: int = 64,
|
40 |
-
num_samples: Optional[int] = None,
|
41 |
-
invalid_list: Optional[str] = None,
|
42 |
-
trans_norm_system: bool = True, # if True, transform all normals map into the cam system of front view
|
43 |
-
augment_data: bool = False,
|
44 |
-
read_normal: bool = True,
|
45 |
-
read_color: bool = False,
|
46 |
-
read_depth: bool = False,
|
47 |
-
mix_color_normal: bool = False,
|
48 |
-
random_view_and_domain: bool = False
|
49 |
-
) -> None:
|
50 |
-
"""Create a dataset from a folder of images.
|
51 |
-
If you pass in a root directory it will be searched for images
|
52 |
-
ending in ext (ext can be a list)
|
53 |
-
"""
|
54 |
-
self.root_dir = Path(root_dir)
|
55 |
-
self.num_views = num_views
|
56 |
-
self.bg_color = bg_color
|
57 |
-
self.validation = validation
|
58 |
-
self.num_samples = num_samples
|
59 |
-
self.trans_norm_system = trans_norm_system
|
60 |
-
self.augment_data = augment_data
|
61 |
-
self.invalid_list = invalid_list
|
62 |
-
self.groups_num = groups_num
|
63 |
-
print("augment data: ", self.augment_data)
|
64 |
-
self.img_wh = img_wh
|
65 |
-
self.read_normal = read_normal
|
66 |
-
self.read_color = read_color
|
67 |
-
self.read_depth = read_depth
|
68 |
-
self.mix_color_normal = mix_color_normal # mix load color and normal maps
|
69 |
-
self.random_view_and_domain = random_view_and_domain # load normal or rgb of a single view
|
70 |
-
self.random_views = random_views
|
71 |
-
if not self.random_views:
|
72 |
-
if self.num_views == 4:
|
73 |
-
self.view_types = ['front', 'right', 'back', 'left']
|
74 |
-
elif self.num_views == 5:
|
75 |
-
self.view_types = ['front', 'front_right', 'right', 'back', 'left']
|
76 |
-
elif self.num_views == 6 or self.num_views==1:
|
77 |
-
self.view_types = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
|
78 |
-
else:
|
79 |
-
self.view_types = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
|
80 |
-
|
81 |
-
self.fix_cam_pose_dir = "./mvdiffusion/data/fixed_poses/nine_views"
|
82 |
-
|
83 |
-
self.fix_cam_poses = self.load_fixed_poses() # world2cam matrix
|
84 |
-
|
85 |
-
if object_list is not None:
|
86 |
-
with open(object_list) as f:
|
87 |
-
self.objects = json.load(f)
|
88 |
-
self.objects = [os.path.basename(o).replace(".glb", "") for o in self.objects]
|
89 |
-
else:
|
90 |
-
self.objects = os.listdir(self.root_dir)
|
91 |
-
self.objects = sorted(self.objects)
|
92 |
-
|
93 |
-
if self.invalid_list is not None:
|
94 |
-
with open(self.invalid_list) as f:
|
95 |
-
self.invalid_objects = json.load(f)
|
96 |
-
self.invalid_objects = [os.path.basename(o).replace(".glb", "") for o in self.invalid_objects]
|
97 |
-
else:
|
98 |
-
self.invalid_objects = []
|
99 |
-
|
100 |
-
|
101 |
-
self.all_objects = set(self.objects) - (set(self.invalid_objects) & set(self.objects))
|
102 |
-
self.all_objects = list(self.all_objects)
|
103 |
-
|
104 |
-
if not validation:
|
105 |
-
self.all_objects = self.all_objects[:-num_validation_samples]
|
106 |
-
else:
|
107 |
-
self.all_objects = self.all_objects[-num_validation_samples:]
|
108 |
-
if num_samples is not None:
|
109 |
-
self.all_objects = self.all_objects[:num_samples]
|
110 |
-
|
111 |
-
print("loading ", len(self.all_objects), " objects in the dataset")
|
112 |
-
|
113 |
-
if self.mix_color_normal:
|
114 |
-
self.backup_data = self.__getitem_mix__(0, "9438abf986c7453a9f4df7c34aa2e65b")
|
115 |
-
elif self.random_view_and_domain:
|
116 |
-
self.backup_data = self.__getitem_random_viewanddomain__(0, "9438abf986c7453a9f4df7c34aa2e65b")
|
117 |
-
else:
|
118 |
-
self.backup_data = self.__getitem_norm__(0, "9438abf986c7453a9f4df7c34aa2e65b") # "66b2134b7e3645b29d7c349645291f78")
|
119 |
-
|
120 |
-
def __len__(self):
|
121 |
-
return len(self.objects)*self.total_view
|
122 |
-
|
123 |
-
def load_fixed_poses(self):
|
124 |
-
poses = {}
|
125 |
-
for face in self.view_types:
|
126 |
-
RT = np.loadtxt(os.path.join(self.fix_cam_pose_dir,'%03d_%s_RT.txt'%(0, face)))
|
127 |
-
poses[face] = RT
|
128 |
-
|
129 |
-
return poses
|
130 |
-
|
131 |
-
def cartesian_to_spherical(self, xyz):
|
132 |
-
ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
|
133 |
-
xy = xyz[:,0]**2 + xyz[:,1]**2
|
134 |
-
z = np.sqrt(xy + xyz[:,2]**2)
|
135 |
-
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
|
136 |
-
#ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
|
137 |
-
azimuth = np.arctan2(xyz[:,1], xyz[:,0])
|
138 |
-
return np.array([theta, azimuth, z])
|
139 |
-
|
140 |
-
def get_T(self, target_RT, cond_RT):
|
141 |
-
R, T = target_RT[:3, :3], target_RT[:, -1]
|
142 |
-
T_target = -R.T @ T # change to cam2world
|
143 |
-
|
144 |
-
R, T = cond_RT[:3, :3], cond_RT[:, -1]
|
145 |
-
T_cond = -R.T @ T
|
146 |
-
|
147 |
-
theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :])
|
148 |
-
theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :])
|
149 |
-
|
150 |
-
d_theta = theta_target - theta_cond
|
151 |
-
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
|
152 |
-
d_z = z_target - z_cond
|
153 |
-
|
154 |
-
# d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
|
155 |
-
return d_theta, d_azimuth
|
156 |
-
|
157 |
-
def get_bg_color(self):
|
158 |
-
if self.bg_color == 'white':
|
159 |
-
bg_color = np.array([1., 1., 1.], dtype=np.float32)
|
160 |
-
elif self.bg_color == 'black':
|
161 |
-
bg_color = np.array([0., 0., 0.], dtype=np.float32)
|
162 |
-
elif self.bg_color == 'gray':
|
163 |
-
bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32)
|
164 |
-
elif self.bg_color == 'random':
|
165 |
-
bg_color = np.random.rand(3)
|
166 |
-
elif self.bg_color == 'three_choices':
|
167 |
-
white = np.array([1., 1., 1.], dtype=np.float32)
|
168 |
-
black = np.array([0., 0., 0.], dtype=np.float32)
|
169 |
-
gray = np.array([0.5, 0.5, 0.5], dtype=np.float32)
|
170 |
-
bg_color = random.choice([white, black, gray])
|
171 |
-
elif isinstance(self.bg_color, float):
|
172 |
-
bg_color = np.array([self.bg_color] * 3, dtype=np.float32)
|
173 |
-
else:
|
174 |
-
raise NotImplementedError
|
175 |
-
return bg_color
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
def load_mask(self, img_path, return_type='np'):
|
180 |
-
# not using cv2 as may load in uint16 format
|
181 |
-
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
|
182 |
-
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
|
183 |
-
# pil always returns uint8
|
184 |
-
img = np.array(Image.open(img_path).resize(self.img_wh))
|
185 |
-
img = np.float32(img > 0)
|
186 |
-
|
187 |
-
assert len(np.shape(img)) == 2
|
188 |
-
|
189 |
-
if return_type == "np":
|
190 |
-
pass
|
191 |
-
elif return_type == "pt":
|
192 |
-
img = torch.from_numpy(img)
|
193 |
-
else:
|
194 |
-
raise NotImplementedError
|
195 |
-
|
196 |
-
return img
|
197 |
-
|
198 |
-
def load_image(self, img_path, bg_color, alpha, return_type='np'):
|
199 |
-
# not using cv2 as may load in uint16 format
|
200 |
-
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
|
201 |
-
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
|
202 |
-
# pil always returns uint8
|
203 |
-
img = np.array(Image.open(img_path).resize(self.img_wh))
|
204 |
-
img = img.astype(np.float32) / 255. # [0, 1]
|
205 |
-
assert img.shape[-1] == 3 # RGB
|
206 |
-
|
207 |
-
if alpha.shape[-1] != 1:
|
208 |
-
alpha = alpha[:, :, None]
|
209 |
-
|
210 |
-
img = img[...,:3] * alpha + bg_color * (1 - alpha)
|
211 |
-
|
212 |
-
if return_type == "np":
|
213 |
-
pass
|
214 |
-
elif return_type == "pt":
|
215 |
-
img = torch.from_numpy(img)
|
216 |
-
else:
|
217 |
-
raise NotImplementedError
|
218 |
-
|
219 |
-
return img
|
220 |
-
|
221 |
-
def load_depth(self, img_path, bg_color, alpha, return_type='np'):
|
222 |
-
# not using cv2 as may load in uint16 format
|
223 |
-
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
|
224 |
-
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
|
225 |
-
# pil always returns uint8
|
226 |
-
img = np.array(Image.open(img_path).resize(self.img_wh))
|
227 |
-
img = img.astype(np.float32) / 65535. # [0, 1]
|
228 |
-
|
229 |
-
img[img > 0.4] = 0
|
230 |
-
img = img / 0.4
|
231 |
-
|
232 |
-
assert img.ndim == 2 # depth
|
233 |
-
img = np.stack([img]*3, axis=-1)
|
234 |
-
|
235 |
-
if alpha.shape[-1] != 1:
|
236 |
-
alpha = alpha[:, :, None]
|
237 |
-
|
238 |
-
# print(np.max(img[:, :, 0]))
|
239 |
-
|
240 |
-
img = img[...,:3] * alpha + bg_color * (1 - alpha)
|
241 |
-
|
242 |
-
if return_type == "np":
|
243 |
-
pass
|
244 |
-
elif return_type == "pt":
|
245 |
-
img = torch.from_numpy(img)
|
246 |
-
else:
|
247 |
-
raise NotImplementedError
|
248 |
-
|
249 |
-
return img
|
250 |
-
|
251 |
-
def load_normal(self, img_path, bg_color, alpha, RT_w2c=None, RT_w2c_cond=None, return_type='np'):
|
252 |
-
# not using cv2 as may load in uint16 format
|
253 |
-
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
|
254 |
-
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
|
255 |
-
# pil always returns uint8
|
256 |
-
normal = np.array(Image.open(img_path).resize(self.img_wh))
|
257 |
-
|
258 |
-
assert normal.shape[-1] == 3 # RGB
|
259 |
-
|
260 |
-
normal = trans_normal(img2normal(normal), RT_w2c, RT_w2c_cond)
|
261 |
-
|
262 |
-
img = (normal*0.5 + 0.5).astype(np.float32) # [0, 1]
|
263 |
-
|
264 |
-
if alpha.shape[-1] != 1:
|
265 |
-
alpha = alpha[:, :, None]
|
266 |
-
|
267 |
-
img = img[...,:3] * alpha + bg_color * (1 - alpha)
|
268 |
-
|
269 |
-
if return_type == "np":
|
270 |
-
pass
|
271 |
-
elif return_type == "pt":
|
272 |
-
img = torch.from_numpy(img)
|
273 |
-
else:
|
274 |
-
raise NotImplementedError
|
275 |
-
|
276 |
-
return img
|
277 |
-
|
278 |
-
def __len__(self):
|
279 |
-
return len(self.all_objects)
|
280 |
-
|
281 |
-
def __getitem_mix__(self, index, debug_object=None):
|
282 |
-
if debug_object is not None:
|
283 |
-
object_name = debug_object #
|
284 |
-
set_idx = random.sample(range(0, self.groups_num), 1)[0] # without replacement
|
285 |
-
else:
|
286 |
-
object_name = self.all_objects[index%len(self.all_objects)]
|
287 |
-
set_idx = 0
|
288 |
-
|
289 |
-
if self.augment_data:
|
290 |
-
cond_view = random.sample(self.view_types, k=1)[0]
|
291 |
-
else:
|
292 |
-
cond_view = 'front'
|
293 |
-
|
294 |
-
if random.random() < 0.5:
|
295 |
-
read_color, read_normal, read_depth = True, False, False
|
296 |
-
else:
|
297 |
-
read_color, read_normal, read_depth = False, True, True
|
298 |
-
|
299 |
-
read_normal = read_normal & self.read_normal
|
300 |
-
read_depth = read_depth & self.read_depth
|
301 |
-
|
302 |
-
assert (read_color and (read_normal or read_depth)) is False
|
303 |
-
|
304 |
-
view_types = self.view_types
|
305 |
-
|
306 |
-
cond_w2c = self.fix_cam_poses[cond_view]
|
307 |
-
|
308 |
-
tgt_w2cs = [self.fix_cam_poses[view] for view in view_types]
|
309 |
-
|
310 |
-
elevations = []
|
311 |
-
azimuths = []
|
312 |
-
|
313 |
-
# get the bg color
|
314 |
-
bg_color = self.get_bg_color()
|
315 |
-
|
316 |
-
cond_alpha = self.load_mask(os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, cond_view)), return_type='np')
|
317 |
-
img_tensors_in = [
|
318 |
-
self.load_image(os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, cond_view)), bg_color, cond_alpha, return_type='pt').permute(2, 0, 1)
|
319 |
-
] * self.num_views
|
320 |
-
img_tensors_out = []
|
321 |
-
|
322 |
-
for view, tgt_w2c in zip(view_types, tgt_w2cs):
|
323 |
-
img_path = os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, view))
|
324 |
-
mask_path = os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, view))
|
325 |
-
normal_path = os.path.join(self.root_dir, object_name[:3], object_name, "normals_%03d_%s.png" % (set_idx, view))
|
326 |
-
depth_path = os.path.join(self.root_dir, object_name[:3], object_name, "depth_%03d_%s.png" % (set_idx, view))
|
327 |
-
alpha = self.load_mask(mask_path, return_type='np')
|
328 |
-
|
329 |
-
if read_color:
|
330 |
-
img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt")
|
331 |
-
img_tensor = img_tensor.permute(2, 0, 1)
|
332 |
-
img_tensors_out.append(img_tensor)
|
333 |
-
|
334 |
-
if read_normal:
|
335 |
-
normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt").permute(2, 0, 1)
|
336 |
-
img_tensors_out.append(normal_tensor)
|
337 |
-
if read_depth:
|
338 |
-
depth_tensor = self.load_depth(depth_path, bg_color, alpha, return_type="pt").permute(2, 0, 1)
|
339 |
-
img_tensors_out.append(depth_tensor)
|
340 |
-
|
341 |
-
# evelations, azimuths
|
342 |
-
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
|
343 |
-
elevations.append(elevation)
|
344 |
-
azimuths.append(azimuth)
|
345 |
-
|
346 |
-
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
|
347 |
-
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
348 |
-
|
349 |
-
|
350 |
-
elevations = torch.as_tensor(elevations).float().squeeze(1)
|
351 |
-
azimuths = torch.as_tensor(azimuths).float().squeeze(1)
|
352 |
-
elevations_cond = torch.as_tensor([0] * self.num_views).float() # fixed only use 4 views to train
|
353 |
-
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3)
|
354 |
-
|
355 |
-
normal_class = torch.tensor([1, 0]).float()
|
356 |
-
normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0) # (Nv, 2)
|
357 |
-
color_class = torch.tensor([0, 1]).float()
|
358 |
-
color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0) # (Nv, 2)
|
359 |
-
if read_normal or read_depth:
|
360 |
-
task_embeddings = normal_task_embeddings
|
361 |
-
if read_color:
|
362 |
-
task_embeddings = color_task_embeddings
|
363 |
-
|
364 |
-
return {
|
365 |
-
'elevations_cond': elevations_cond,
|
366 |
-
'elevations_cond_deg': torch.rad2deg(elevations_cond),
|
367 |
-
'elevations': elevations,
|
368 |
-
'azimuths': azimuths,
|
369 |
-
'elevations_deg': torch.rad2deg(elevations),
|
370 |
-
'azimuths_deg': torch.rad2deg(azimuths),
|
371 |
-
'imgs_in': img_tensors_in,
|
372 |
-
'imgs_out': img_tensors_out,
|
373 |
-
'camera_embeddings': camera_embeddings,
|
374 |
-
'task_embeddings': task_embeddings
|
375 |
-
}
|
376 |
-
|
377 |
-
|
378 |
-
def __getitem_random_viewanddomain__(self, index, debug_object=None):
|
379 |
-
if debug_object is not None:
|
380 |
-
object_name = debug_object #
|
381 |
-
set_idx = random.sample(range(0, self.groups_num), 1)[0] # without replacement
|
382 |
-
else:
|
383 |
-
object_name = self.all_objects[index%len(self.all_objects)]
|
384 |
-
set_idx = 0
|
385 |
-
|
386 |
-
if self.augment_data:
|
387 |
-
cond_view = random.sample(self.view_types, k=1)[0]
|
388 |
-
else:
|
389 |
-
cond_view = 'front'
|
390 |
-
|
391 |
-
if random.random() < 0.5:
|
392 |
-
read_color, read_normal, read_depth = True, False, False
|
393 |
-
else:
|
394 |
-
read_color, read_normal, read_depth = False, True, True
|
395 |
-
|
396 |
-
read_normal = read_normal & self.read_normal
|
397 |
-
read_depth = read_depth & self.read_depth
|
398 |
-
|
399 |
-
assert (read_color and (read_normal or read_depth)) is False
|
400 |
-
|
401 |
-
view_types = self.view_types
|
402 |
-
|
403 |
-
cond_w2c = self.fix_cam_poses[cond_view]
|
404 |
-
|
405 |
-
tgt_w2cs = [self.fix_cam_poses[view] for view in view_types]
|
406 |
-
|
407 |
-
elevations = []
|
408 |
-
azimuths = []
|
409 |
-
|
410 |
-
# get the bg color
|
411 |
-
bg_color = self.get_bg_color()
|
412 |
-
|
413 |
-
cond_alpha = self.load_mask(os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, cond_view)), return_type='np')
|
414 |
-
img_tensors_in = [
|
415 |
-
self.load_image(os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, cond_view)), bg_color, cond_alpha, return_type='pt').permute(2, 0, 1)
|
416 |
-
] * self.num_views
|
417 |
-
img_tensors_out = []
|
418 |
-
|
419 |
-
random_viewidx = random.randint(0, len(view_types)-1)
|
420 |
-
|
421 |
-
for view, tgt_w2c in zip([view_types[random_viewidx]], [tgt_w2cs[random_viewidx]]):
|
422 |
-
img_path = os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, view))
|
423 |
-
mask_path = os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, view))
|
424 |
-
normal_path = os.path.join(self.root_dir, object_name[:3], object_name, "normals_%03d_%s.png" % (set_idx, view))
|
425 |
-
depth_path = os.path.join(self.root_dir, object_name[:3], object_name, "depth_%03d_%s.png" % (set_idx, view))
|
426 |
-
alpha = self.load_mask(mask_path, return_type='np')
|
427 |
-
|
428 |
-
if read_color:
|
429 |
-
img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt")
|
430 |
-
img_tensor = img_tensor.permute(2, 0, 1)
|
431 |
-
img_tensors_out.append(img_tensor)
|
432 |
-
|
433 |
-
if read_normal:
|
434 |
-
normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt").permute(2, 0, 1)
|
435 |
-
img_tensors_out.append(normal_tensor)
|
436 |
-
if read_depth:
|
437 |
-
depth_tensor = self.load_depth(depth_path, bg_color, alpha, return_type="pt").permute(2, 0, 1)
|
438 |
-
img_tensors_out.append(depth_tensor)
|
439 |
-
|
440 |
-
# evelations, azimuths
|
441 |
-
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
|
442 |
-
elevations.append(elevation)
|
443 |
-
azimuths.append(azimuth)
|
444 |
-
|
445 |
-
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
|
446 |
-
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
447 |
-
|
448 |
-
|
449 |
-
elevations = torch.as_tensor(elevations).float().squeeze(1)
|
450 |
-
azimuths = torch.as_tensor(azimuths).float().squeeze(1)
|
451 |
-
elevations_cond = torch.as_tensor([0] * self.num_views).float() # fixed only use 4 views to train
|
452 |
-
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3)
|
453 |
-
|
454 |
-
normal_class = torch.tensor([1, 0]).float()
|
455 |
-
normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0) # (Nv, 2)
|
456 |
-
color_class = torch.tensor([0, 1]).float()
|
457 |
-
color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0) # (Nv, 2)
|
458 |
-
if read_normal or read_depth:
|
459 |
-
task_embeddings = normal_task_embeddings
|
460 |
-
if read_color:
|
461 |
-
task_embeddings = color_task_embeddings
|
462 |
-
|
463 |
-
return {
|
464 |
-
'elevations_cond': elevations_cond,
|
465 |
-
'elevations_cond_deg': torch.rad2deg(elevations_cond),
|
466 |
-
'elevations': elevations,
|
467 |
-
'azimuths': azimuths,
|
468 |
-
'elevations_deg': torch.rad2deg(elevations),
|
469 |
-
'azimuths_deg': torch.rad2deg(azimuths),
|
470 |
-
'imgs_in': img_tensors_in,
|
471 |
-
'imgs_out': img_tensors_out,
|
472 |
-
'camera_embeddings': camera_embeddings,
|
473 |
-
'task_embeddings': task_embeddings
|
474 |
-
}
|
475 |
-
|
476 |
-
|
477 |
-
def __getitem_norm__(self, index, debug_object=None):
|
478 |
-
if debug_object is not None:
|
479 |
-
object_name = debug_object #
|
480 |
-
set_idx = random.sample(range(0, self.groups_num), 1)[0] # without replacement
|
481 |
-
else:
|
482 |
-
object_name = self.all_objects[index%len(self.all_objects)]
|
483 |
-
set_idx = 0
|
484 |
-
|
485 |
-
if self.augment_data:
|
486 |
-
cond_view = random.sample(self.view_types, k=1)[0]
|
487 |
-
else:
|
488 |
-
cond_view = 'front'
|
489 |
-
|
490 |
-
# if self.random_views:
|
491 |
-
# view_types = ['front']+random.sample(self.view_types[1:], 3)
|
492 |
-
# else:
|
493 |
-
# view_types = self.view_types
|
494 |
-
|
495 |
-
view_types = self.view_types
|
496 |
-
|
497 |
-
cond_w2c = self.fix_cam_poses[cond_view]
|
498 |
-
|
499 |
-
tgt_w2cs = [self.fix_cam_poses[view] for view in view_types]
|
500 |
-
|
501 |
-
elevations = []
|
502 |
-
azimuths = []
|
503 |
-
|
504 |
-
# get the bg color
|
505 |
-
bg_color = self.get_bg_color()
|
506 |
-
|
507 |
-
cond_alpha = self.load_mask(os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, cond_view)), return_type='np')
|
508 |
-
img_tensors_in = [
|
509 |
-
self.load_image(os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, cond_view)), bg_color, cond_alpha, return_type='pt').permute(2, 0, 1)
|
510 |
-
] * self.num_views
|
511 |
-
img_tensors_out = []
|
512 |
-
normal_tensors_out = []
|
513 |
-
for view, tgt_w2c in zip(view_types, tgt_w2cs):
|
514 |
-
img_path = os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, view))
|
515 |
-
mask_path = os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, view))
|
516 |
-
alpha = self.load_mask(mask_path, return_type='np')
|
517 |
-
|
518 |
-
if self.read_color:
|
519 |
-
img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt")
|
520 |
-
img_tensor = img_tensor.permute(2, 0, 1)
|
521 |
-
img_tensors_out.append(img_tensor)
|
522 |
-
|
523 |
-
if self.read_normal:
|
524 |
-
normal_path = os.path.join(self.root_dir, object_name[:3], object_name, "normals_%03d_%s.png" % (set_idx, view))
|
525 |
-
normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt").permute(2, 0, 1)
|
526 |
-
normal_tensors_out.append(normal_tensor)
|
527 |
-
|
528 |
-
# evelations, azimuths
|
529 |
-
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
|
530 |
-
elevations.append(elevation)
|
531 |
-
azimuths.append(azimuth)
|
532 |
-
|
533 |
-
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
|
534 |
-
if self.read_color:
|
535 |
-
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
536 |
-
if self.read_normal:
|
537 |
-
normal_tensors_out = torch.stack(normal_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
538 |
-
|
539 |
-
elevations = torch.as_tensor(elevations).float().squeeze(1)
|
540 |
-
azimuths = torch.as_tensor(azimuths).float().squeeze(1)
|
541 |
-
elevations_cond = torch.as_tensor([0] * self.num_views).float() # fixed only use 4 views to train
|
542 |
-
|
543 |
-
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3)
|
544 |
-
|
545 |
-
normal_class = torch.tensor([1, 0]).float()
|
546 |
-
normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0) # (Nv, 2)
|
547 |
-
color_class = torch.tensor([0, 1]).float()
|
548 |
-
color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0) # (Nv, 2)
|
549 |
-
|
550 |
-
return {
|
551 |
-
'elevations_cond': elevations_cond,
|
552 |
-
'elevations_cond_deg': torch.rad2deg(elevations_cond),
|
553 |
-
'elevations': elevations,
|
554 |
-
'azimuths': azimuths,
|
555 |
-
'elevations_deg': torch.rad2deg(elevations),
|
556 |
-
'azimuths_deg': torch.rad2deg(azimuths),
|
557 |
-
'imgs_in': img_tensors_in,
|
558 |
-
'imgs_out': img_tensors_out,
|
559 |
-
'normals_out': normal_tensors_out,
|
560 |
-
'camera_embeddings': camera_embeddings,
|
561 |
-
'normal_task_embeddings': normal_task_embeddings,
|
562 |
-
'color_task_embeddings': color_task_embeddings
|
563 |
-
}
|
564 |
-
|
565 |
-
def __getitem__(self, index):
|
566 |
-
|
567 |
-
try:
|
568 |
-
if self.mix_color_normal:
|
569 |
-
data = self.__getitem_mix__(index)
|
570 |
-
elif self.random_view_and_domain:
|
571 |
-
data = self.__getitem_random_viewanddomain__(index)
|
572 |
-
else:
|
573 |
-
data = self.__getitem_norm__(index)
|
574 |
-
return data
|
575 |
-
except:
|
576 |
-
print("load error ", self.all_objects[index%len(self.all_objects)] )
|
577 |
-
return self.backup_data
|
578 |
-
|
579 |
-
|
580 |
-
class ConcatDataset(torch.utils.data.Dataset):
|
581 |
-
def __init__(self, datasets, weights):
|
582 |
-
self.datasets = datasets
|
583 |
-
self.weights = weights
|
584 |
-
self.num_datasets = len(datasets)
|
585 |
-
|
586 |
-
def __getitem__(self, i):
|
587 |
-
|
588 |
-
chosen = random.choices(self.datasets, self.weights, k=1)[0]
|
589 |
-
return chosen[i]
|
590 |
-
|
591 |
-
def __len__(self):
|
592 |
-
return max(len(d) for d in self.datasets)
|
593 |
-
|
594 |
-
if __name__ == "__main__":
|
595 |
-
train_dataset = ObjaverseDataset(
|
596 |
-
root_dir="/ghome/l5/xxlong/.objaverse/hf-objaverse-v1/renderings",
|
597 |
-
size=(128, 128),
|
598 |
-
ext="hdf5",
|
599 |
-
default_trans=torch.zeros(3),
|
600 |
-
return_paths=False,
|
601 |
-
total_view=8,
|
602 |
-
validation=False,
|
603 |
-
object_list=None,
|
604 |
-
views_mode='fourviews'
|
605 |
-
)
|
606 |
-
data0 = train_dataset[0]
|
607 |
-
data1 = train_dataset[50]
|
608 |
-
# print(data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|