Spaces:
Build error
Build error
from typing import Dict | |
import numpy as np | |
from omegaconf import DictConfig, ListConfig | |
import torch | |
from torch.utils.data import Dataset | |
from pathlib import Path | |
import json | |
from PIL import Image | |
from torchvision import transforms | |
from einops import rearrange | |
from typing import Literal, Tuple, Optional, Any | |
import cv2 | |
import random | |
import json | |
import os, sys | |
import math | |
import PIL.Image | |
from .normal_utils import trans_normal, normal2img, img2normal | |
import pdb | |
def shift_list(lst, n): | |
length = len(lst) | |
n = n % length # Ensure n is within the range of the list length | |
return lst[-n:] + lst[:-n] | |
class ObjaverseDataset(Dataset): | |
def __init__(self, | |
root_dir: str, | |
num_views: int, | |
bg_color: Any, | |
img_wh: Tuple[int, int], | |
object_list: str, | |
groups_num: int=1, | |
validation: bool = False, | |
random_views: bool = False, | |
num_validation_samples: int = 64, | |
num_samples: Optional[int] = None, | |
invalid_list: Optional[str] = None, | |
trans_norm_system: bool = True, # if True, transform all normals map into the cam system of front view | |
augment_data: bool = False, | |
read_normal: bool = True, | |
read_color: bool = False, | |
read_depth: bool = False, | |
mix_color_normal: bool = False, | |
random_view_and_domain: bool = False | |
) -> None: | |
"""Create a dataset from a folder of images. | |
If you pass in a root directory it will be searched for images | |
ending in ext (ext can be a list) | |
""" | |
self.root_dir = Path(root_dir) | |
self.num_views = num_views | |
self.bg_color = bg_color | |
self.validation = validation | |
self.num_samples = num_samples | |
self.trans_norm_system = trans_norm_system | |
self.augment_data = augment_data | |
self.invalid_list = invalid_list | |
self.groups_num = groups_num | |
print("augment data: ", self.augment_data) | |
self.img_wh = img_wh | |
self.read_normal = read_normal | |
self.read_color = read_color | |
self.read_depth = read_depth | |
self.mix_color_normal = mix_color_normal # mix load color and normal maps | |
self.random_view_and_domain = random_view_and_domain # load normal or rgb of a single view | |
self.random_views = random_views | |
if not self.random_views: | |
if self.num_views == 4: | |
self.view_types = ['front', 'right', 'back', 'left'] | |
elif self.num_views == 5: | |
self.view_types = ['front', 'front_right', 'right', 'back', 'left'] | |
elif self.num_views == 6 or self.num_views==1: | |
self.view_types = ['front', 'front_right', 'right', 'back', 'left', 'front_left'] | |
else: | |
self.view_types = ['front', 'front_right', 'right', 'back', 'left', 'front_left'] | |
self.fix_cam_pose_dir = "./mvdiffusion/data/fixed_poses/nine_views" | |
self.fix_cam_poses = self.load_fixed_poses() # world2cam matrix | |
if object_list is not None: | |
with open(object_list) as f: | |
self.objects = json.load(f) | |
self.objects = [os.path.basename(o).replace(".glb", "") for o in self.objects] | |
else: | |
self.objects = os.listdir(self.root_dir) | |
self.objects = sorted(self.objects) | |
if self.invalid_list is not None: | |
with open(self.invalid_list) as f: | |
self.invalid_objects = json.load(f) | |
self.invalid_objects = [os.path.basename(o).replace(".glb", "") for o in self.invalid_objects] | |
else: | |
self.invalid_objects = [] | |
self.all_objects = set(self.objects) - (set(self.invalid_objects) & set(self.objects)) | |
self.all_objects = list(self.all_objects) | |
if not validation: | |
self.all_objects = self.all_objects[:-num_validation_samples] | |
else: | |
self.all_objects = self.all_objects[-num_validation_samples:] | |
if num_samples is not None: | |
self.all_objects = self.all_objects[:num_samples] | |
print("loading ", len(self.all_objects), " objects in the dataset") | |
if self.mix_color_normal: | |
self.backup_data = self.__getitem_mix__(0, "9438abf986c7453a9f4df7c34aa2e65b") | |
elif self.random_view_and_domain: | |
self.backup_data = self.__getitem_random_viewanddomain__(0, "9438abf986c7453a9f4df7c34aa2e65b") | |
else: | |
self.backup_data = self.__getitem_norm__(0, "9438abf986c7453a9f4df7c34aa2e65b") # "66b2134b7e3645b29d7c349645291f78") | |
def __len__(self): | |
return len(self.objects)*self.total_view | |
def load_fixed_poses(self): | |
poses = {} | |
for face in self.view_types: | |
RT = np.loadtxt(os.path.join(self.fix_cam_pose_dir,'%03d_%s_RT.txt'%(0, face))) | |
poses[face] = RT | |
return poses | |
def cartesian_to_spherical(self, xyz): | |
ptsnew = np.hstack((xyz, np.zeros(xyz.shape))) | |
xy = xyz[:,0]**2 + xyz[:,1]**2 | |
z = np.sqrt(xy + xyz[:,2]**2) | |
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down | |
#ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up | |
azimuth = np.arctan2(xyz[:,1], xyz[:,0]) | |
return np.array([theta, azimuth, z]) | |
def get_T(self, target_RT, cond_RT): | |
R, T = target_RT[:3, :3], target_RT[:, -1] | |
T_target = -R.T @ T # change to cam2world | |
R, T = cond_RT[:3, :3], cond_RT[:, -1] | |
T_cond = -R.T @ T | |
theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :]) | |
theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :]) | |
d_theta = theta_target - theta_cond | |
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi) | |
d_z = z_target - z_cond | |
# d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()]) | |
return d_theta, d_azimuth | |
def get_bg_color(self): | |
if self.bg_color == 'white': | |
bg_color = np.array([1., 1., 1.], dtype=np.float32) | |
elif self.bg_color == 'black': | |
bg_color = np.array([0., 0., 0.], dtype=np.float32) | |
elif self.bg_color == 'gray': | |
bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32) | |
elif self.bg_color == 'random': | |
bg_color = np.random.rand(3) | |
elif self.bg_color == 'three_choices': | |
white = np.array([1., 1., 1.], dtype=np.float32) | |
black = np.array([0., 0., 0.], dtype=np.float32) | |
gray = np.array([0.5, 0.5, 0.5], dtype=np.float32) | |
bg_color = random.choice([white, black, gray]) | |
elif isinstance(self.bg_color, float): | |
bg_color = np.array([self.bg_color] * 3, dtype=np.float32) | |
else: | |
raise NotImplementedError | |
return bg_color | |
def load_mask(self, img_path, return_type='np'): | |
# not using cv2 as may load in uint16 format | |
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255] | |
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC) | |
# pil always returns uint8 | |
img = np.array(Image.open(img_path).resize(self.img_wh)) | |
img = np.float32(img > 0) | |
assert len(np.shape(img)) == 2 | |
if return_type == "np": | |
pass | |
elif return_type == "pt": | |
img = torch.from_numpy(img) | |
else: | |
raise NotImplementedError | |
return img | |
def load_image(self, img_path, bg_color, alpha, return_type='np'): | |
# not using cv2 as may load in uint16 format | |
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255] | |
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC) | |
# pil always returns uint8 | |
img = np.array(Image.open(img_path).resize(self.img_wh)) | |
img = img.astype(np.float32) / 255. # [0, 1] | |
assert img.shape[-1] == 3 # RGB | |
if alpha.shape[-1] != 1: | |
alpha = alpha[:, :, None] | |
img = img[...,:3] * alpha + bg_color * (1 - alpha) | |
if return_type == "np": | |
pass | |
elif return_type == "pt": | |
img = torch.from_numpy(img) | |
else: | |
raise NotImplementedError | |
return img | |
def load_depth(self, img_path, bg_color, alpha, return_type='np'): | |
# not using cv2 as may load in uint16 format | |
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255] | |
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC) | |
# pil always returns uint8 | |
img = np.array(Image.open(img_path).resize(self.img_wh)) | |
img = img.astype(np.float32) / 65535. # [0, 1] | |
img[img > 0.4] = 0 | |
img = img / 0.4 | |
assert img.ndim == 2 # depth | |
img = np.stack([img]*3, axis=-1) | |
if alpha.shape[-1] != 1: | |
alpha = alpha[:, :, None] | |
# print(np.max(img[:, :, 0])) | |
img = img[...,:3] * alpha + bg_color * (1 - alpha) | |
if return_type == "np": | |
pass | |
elif return_type == "pt": | |
img = torch.from_numpy(img) | |
else: | |
raise NotImplementedError | |
return img | |
def load_normal(self, img_path, bg_color, alpha, RT_w2c=None, RT_w2c_cond=None, return_type='np'): | |
# not using cv2 as may load in uint16 format | |
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255] | |
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC) | |
# pil always returns uint8 | |
normal = np.array(Image.open(img_path).resize(self.img_wh)) | |
assert normal.shape[-1] == 3 # RGB | |
normal = trans_normal(img2normal(normal), RT_w2c, RT_w2c_cond) | |
img = (normal*0.5 + 0.5).astype(np.float32) # [0, 1] | |
if alpha.shape[-1] != 1: | |
alpha = alpha[:, :, None] | |
img = img[...,:3] * alpha + bg_color * (1 - alpha) | |
if return_type == "np": | |
pass | |
elif return_type == "pt": | |
img = torch.from_numpy(img) | |
else: | |
raise NotImplementedError | |
return img | |
def __len__(self): | |
return len(self.all_objects) | |
def __getitem_mix__(self, index, debug_object=None): | |
if debug_object is not None: | |
object_name = debug_object # | |
set_idx = random.sample(range(0, self.groups_num), 1)[0] # without replacement | |
else: | |
object_name = self.all_objects[index%len(self.all_objects)] | |
set_idx = 0 | |
if self.augment_data: | |
cond_view = random.sample(self.view_types, k=1)[0] | |
else: | |
cond_view = 'front' | |
if random.random() < 0.5: | |
read_color, read_normal, read_depth = True, False, False | |
else: | |
read_color, read_normal, read_depth = False, True, True | |
read_normal = read_normal & self.read_normal | |
read_depth = read_depth & self.read_depth | |
assert (read_color and (read_normal or read_depth)) is False | |
view_types = self.view_types | |
cond_w2c = self.fix_cam_poses[cond_view] | |
tgt_w2cs = [self.fix_cam_poses[view] for view in view_types] | |
elevations = [] | |
azimuths = [] | |
# get the bg color | |
bg_color = self.get_bg_color() | |
cond_alpha = self.load_mask(os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, cond_view)), return_type='np') | |
img_tensors_in = [ | |
self.load_image(os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, cond_view)), bg_color, cond_alpha, return_type='pt').permute(2, 0, 1) | |
] * self.num_views | |
img_tensors_out = [] | |
for view, tgt_w2c in zip(view_types, tgt_w2cs): | |
img_path = os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, view)) | |
mask_path = os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, view)) | |
normal_path = os.path.join(self.root_dir, object_name[:3], object_name, "normals_%03d_%s.png" % (set_idx, view)) | |
depth_path = os.path.join(self.root_dir, object_name[:3], object_name, "depth_%03d_%s.png" % (set_idx, view)) | |
alpha = self.load_mask(mask_path, return_type='np') | |
if read_color: | |
img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt") | |
img_tensor = img_tensor.permute(2, 0, 1) | |
img_tensors_out.append(img_tensor) | |
if read_normal: | |
normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt").permute(2, 0, 1) | |
img_tensors_out.append(normal_tensor) | |
if read_depth: | |
depth_tensor = self.load_depth(depth_path, bg_color, alpha, return_type="pt").permute(2, 0, 1) | |
img_tensors_out.append(depth_tensor) | |
# evelations, azimuths | |
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c) | |
elevations.append(elevation) | |
azimuths.append(azimuth) | |
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W) | |
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W) | |
elevations = torch.as_tensor(elevations).float().squeeze(1) | |
azimuths = torch.as_tensor(azimuths).float().squeeze(1) | |
elevations_cond = torch.as_tensor([0] * self.num_views).float() # fixed only use 4 views to train | |
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3) | |
normal_class = torch.tensor([1, 0]).float() | |
normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0) # (Nv, 2) | |
color_class = torch.tensor([0, 1]).float() | |
color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0) # (Nv, 2) | |
if read_normal or read_depth: | |
task_embeddings = normal_task_embeddings | |
if read_color: | |
task_embeddings = color_task_embeddings | |
return { | |
'elevations_cond': elevations_cond, | |
'elevations_cond_deg': torch.rad2deg(elevations_cond), | |
'elevations': elevations, | |
'azimuths': azimuths, | |
'elevations_deg': torch.rad2deg(elevations), | |
'azimuths_deg': torch.rad2deg(azimuths), | |
'imgs_in': img_tensors_in, | |
'imgs_out': img_tensors_out, | |
'camera_embeddings': camera_embeddings, | |
'task_embeddings': task_embeddings | |
} | |
def __getitem_random_viewanddomain__(self, index, debug_object=None): | |
if debug_object is not None: | |
object_name = debug_object # | |
set_idx = random.sample(range(0, self.groups_num), 1)[0] # without replacement | |
else: | |
object_name = self.all_objects[index%len(self.all_objects)] | |
set_idx = 0 | |
if self.augment_data: | |
cond_view = random.sample(self.view_types, k=1)[0] | |
else: | |
cond_view = 'front' | |
if random.random() < 0.5: | |
read_color, read_normal, read_depth = True, False, False | |
else: | |
read_color, read_normal, read_depth = False, True, True | |
read_normal = read_normal & self.read_normal | |
read_depth = read_depth & self.read_depth | |
assert (read_color and (read_normal or read_depth)) is False | |
view_types = self.view_types | |
cond_w2c = self.fix_cam_poses[cond_view] | |
tgt_w2cs = [self.fix_cam_poses[view] for view in view_types] | |
elevations = [] | |
azimuths = [] | |
# get the bg color | |
bg_color = self.get_bg_color() | |
cond_alpha = self.load_mask(os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, cond_view)), return_type='np') | |
img_tensors_in = [ | |
self.load_image(os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, cond_view)), bg_color, cond_alpha, return_type='pt').permute(2, 0, 1) | |
] * self.num_views | |
img_tensors_out = [] | |
random_viewidx = random.randint(0, len(view_types)-1) | |
for view, tgt_w2c in zip([view_types[random_viewidx]], [tgt_w2cs[random_viewidx]]): | |
img_path = os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, view)) | |
mask_path = os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, view)) | |
normal_path = os.path.join(self.root_dir, object_name[:3], object_name, "normals_%03d_%s.png" % (set_idx, view)) | |
depth_path = os.path.join(self.root_dir, object_name[:3], object_name, "depth_%03d_%s.png" % (set_idx, view)) | |
alpha = self.load_mask(mask_path, return_type='np') | |
if read_color: | |
img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt") | |
img_tensor = img_tensor.permute(2, 0, 1) | |
img_tensors_out.append(img_tensor) | |
if read_normal: | |
normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt").permute(2, 0, 1) | |
img_tensors_out.append(normal_tensor) | |
if read_depth: | |
depth_tensor = self.load_depth(depth_path, bg_color, alpha, return_type="pt").permute(2, 0, 1) | |
img_tensors_out.append(depth_tensor) | |
# evelations, azimuths | |
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c) | |
elevations.append(elevation) | |
azimuths.append(azimuth) | |
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W) | |
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W) | |
elevations = torch.as_tensor(elevations).float().squeeze(1) | |
azimuths = torch.as_tensor(azimuths).float().squeeze(1) | |
elevations_cond = torch.as_tensor([0] * self.num_views).float() # fixed only use 4 views to train | |
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3) | |
normal_class = torch.tensor([1, 0]).float() | |
normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0) # (Nv, 2) | |
color_class = torch.tensor([0, 1]).float() | |
color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0) # (Nv, 2) | |
if read_normal or read_depth: | |
task_embeddings = normal_task_embeddings | |
if read_color: | |
task_embeddings = color_task_embeddings | |
return { | |
'elevations_cond': elevations_cond, | |
'elevations_cond_deg': torch.rad2deg(elevations_cond), | |
'elevations': elevations, | |
'azimuths': azimuths, | |
'elevations_deg': torch.rad2deg(elevations), | |
'azimuths_deg': torch.rad2deg(azimuths), | |
'imgs_in': img_tensors_in, | |
'imgs_out': img_tensors_out, | |
'camera_embeddings': camera_embeddings, | |
'task_embeddings': task_embeddings | |
} | |
def __getitem_norm__(self, index, debug_object=None): | |
if debug_object is not None: | |
object_name = debug_object # | |
set_idx = random.sample(range(0, self.groups_num), 1)[0] # without replacement | |
else: | |
object_name = self.all_objects[index%len(self.all_objects)] | |
set_idx = 0 | |
if self.augment_data: | |
cond_view = random.sample(self.view_types, k=1)[0] | |
else: | |
cond_view = 'front' | |
# if self.random_views: | |
# view_types = ['front']+random.sample(self.view_types[1:], 3) | |
# else: | |
# view_types = self.view_types | |
view_types = self.view_types | |
cond_w2c = self.fix_cam_poses[cond_view] | |
tgt_w2cs = [self.fix_cam_poses[view] for view in view_types] | |
elevations = [] | |
azimuths = [] | |
# get the bg color | |
bg_color = self.get_bg_color() | |
cond_alpha = self.load_mask(os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, cond_view)), return_type='np') | |
img_tensors_in = [ | |
self.load_image(os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, cond_view)), bg_color, cond_alpha, return_type='pt').permute(2, 0, 1) | |
] * self.num_views | |
img_tensors_out = [] | |
normal_tensors_out = [] | |
for view, tgt_w2c in zip(view_types, tgt_w2cs): | |
img_path = os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, view)) | |
mask_path = os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, view)) | |
alpha = self.load_mask(mask_path, return_type='np') | |
if self.read_color: | |
img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt") | |
img_tensor = img_tensor.permute(2, 0, 1) | |
img_tensors_out.append(img_tensor) | |
if self.read_normal: | |
normal_path = os.path.join(self.root_dir, object_name[:3], object_name, "normals_%03d_%s.png" % (set_idx, view)) | |
normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt").permute(2, 0, 1) | |
normal_tensors_out.append(normal_tensor) | |
# evelations, azimuths | |
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c) | |
elevations.append(elevation) | |
azimuths.append(azimuth) | |
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W) | |
if self.read_color: | |
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W) | |
if self.read_normal: | |
normal_tensors_out = torch.stack(normal_tensors_out, dim=0).float() # (Nv, 3, H, W) | |
elevations = torch.as_tensor(elevations).float().squeeze(1) | |
azimuths = torch.as_tensor(azimuths).float().squeeze(1) | |
elevations_cond = torch.as_tensor([0] * self.num_views).float() # fixed only use 4 views to train | |
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3) | |
normal_class = torch.tensor([1, 0]).float() | |
normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0) # (Nv, 2) | |
color_class = torch.tensor([0, 1]).float() | |
color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0) # (Nv, 2) | |
return { | |
'elevations_cond': elevations_cond, | |
'elevations_cond_deg': torch.rad2deg(elevations_cond), | |
'elevations': elevations, | |
'azimuths': azimuths, | |
'elevations_deg': torch.rad2deg(elevations), | |
'azimuths_deg': torch.rad2deg(azimuths), | |
'imgs_in': img_tensors_in, | |
'imgs_out': img_tensors_out, | |
'normals_out': normal_tensors_out, | |
'camera_embeddings': camera_embeddings, | |
'normal_task_embeddings': normal_task_embeddings, | |
'color_task_embeddings': color_task_embeddings | |
} | |
def __getitem__(self, index): | |
try: | |
if self.mix_color_normal: | |
data = self.__getitem_mix__(index) | |
elif self.random_view_and_domain: | |
data = self.__getitem_random_viewanddomain__(index) | |
else: | |
data = self.__getitem_norm__(index) | |
return data | |
except: | |
print("load error ", self.all_objects[index%len(self.all_objects)] ) | |
return self.backup_data | |
class ConcatDataset(torch.utils.data.Dataset): | |
def __init__(self, datasets, weights): | |
self.datasets = datasets | |
self.weights = weights | |
self.num_datasets = len(datasets) | |
def __getitem__(self, i): | |
chosen = random.choices(self.datasets, self.weights, k=1)[0] | |
return chosen[i] | |
def __len__(self): | |
return max(len(d) for d in self.datasets) | |
if __name__ == "__main__": | |
train_dataset = ObjaverseDataset( | |
root_dir="/ghome/l5/xxlong/.objaverse/hf-objaverse-v1/renderings", | |
size=(128, 128), | |
ext="hdf5", | |
default_trans=torch.zeros(3), | |
return_paths=False, | |
total_view=8, | |
validation=False, | |
object_list=None, | |
views_mode='fourviews' | |
) | |
data0 = train_dataset[0] | |
data1 = train_dataset[50] | |
# print(data) | |