Wonder3D-demo / mvdiffusion /data /objaverse_dataset.py
flamehaze1115's picture
first commit
b582ef0
raw
history blame
24.9 kB
from typing import Dict
import numpy as np
from omegaconf import DictConfig, ListConfig
import torch
from torch.utils.data import Dataset
from pathlib import Path
import json
from PIL import Image
from torchvision import transforms
from einops import rearrange
from typing import Literal, Tuple, Optional, Any
import cv2
import random
import json
import os, sys
import math
import PIL.Image
from .normal_utils import trans_normal, normal2img, img2normal
import pdb
def shift_list(lst, n):
length = len(lst)
n = n % length # Ensure n is within the range of the list length
return lst[-n:] + lst[:-n]
class ObjaverseDataset(Dataset):
def __init__(self,
root_dir: str,
num_views: int,
bg_color: Any,
img_wh: Tuple[int, int],
object_list: str,
groups_num: int=1,
validation: bool = False,
random_views: bool = False,
num_validation_samples: int = 64,
num_samples: Optional[int] = None,
invalid_list: Optional[str] = None,
trans_norm_system: bool = True, # if True, transform all normals map into the cam system of front view
augment_data: bool = False,
read_normal: bool = True,
read_color: bool = False,
read_depth: bool = False,
mix_color_normal: bool = False,
random_view_and_domain: bool = False
) -> None:
"""Create a dataset from a folder of images.
If you pass in a root directory it will be searched for images
ending in ext (ext can be a list)
"""
self.root_dir = Path(root_dir)
self.num_views = num_views
self.bg_color = bg_color
self.validation = validation
self.num_samples = num_samples
self.trans_norm_system = trans_norm_system
self.augment_data = augment_data
self.invalid_list = invalid_list
self.groups_num = groups_num
print("augment data: ", self.augment_data)
self.img_wh = img_wh
self.read_normal = read_normal
self.read_color = read_color
self.read_depth = read_depth
self.mix_color_normal = mix_color_normal # mix load color and normal maps
self.random_view_and_domain = random_view_and_domain # load normal or rgb of a single view
self.random_views = random_views
if not self.random_views:
if self.num_views == 4:
self.view_types = ['front', 'right', 'back', 'left']
elif self.num_views == 5:
self.view_types = ['front', 'front_right', 'right', 'back', 'left']
elif self.num_views == 6 or self.num_views==1:
self.view_types = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
else:
self.view_types = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
self.fix_cam_pose_dir = "./mvdiffusion/data/fixed_poses/nine_views"
self.fix_cam_poses = self.load_fixed_poses() # world2cam matrix
if object_list is not None:
with open(object_list) as f:
self.objects = json.load(f)
self.objects = [os.path.basename(o).replace(".glb", "") for o in self.objects]
else:
self.objects = os.listdir(self.root_dir)
self.objects = sorted(self.objects)
if self.invalid_list is not None:
with open(self.invalid_list) as f:
self.invalid_objects = json.load(f)
self.invalid_objects = [os.path.basename(o).replace(".glb", "") for o in self.invalid_objects]
else:
self.invalid_objects = []
self.all_objects = set(self.objects) - (set(self.invalid_objects) & set(self.objects))
self.all_objects = list(self.all_objects)
if not validation:
self.all_objects = self.all_objects[:-num_validation_samples]
else:
self.all_objects = self.all_objects[-num_validation_samples:]
if num_samples is not None:
self.all_objects = self.all_objects[:num_samples]
print("loading ", len(self.all_objects), " objects in the dataset")
if self.mix_color_normal:
self.backup_data = self.__getitem_mix__(0, "9438abf986c7453a9f4df7c34aa2e65b")
elif self.random_view_and_domain:
self.backup_data = self.__getitem_random_viewanddomain__(0, "9438abf986c7453a9f4df7c34aa2e65b")
else:
self.backup_data = self.__getitem_norm__(0, "9438abf986c7453a9f4df7c34aa2e65b") # "66b2134b7e3645b29d7c349645291f78")
def __len__(self):
return len(self.objects)*self.total_view
def load_fixed_poses(self):
poses = {}
for face in self.view_types:
RT = np.loadtxt(os.path.join(self.fix_cam_pose_dir,'%03d_%s_RT.txt'%(0, face)))
poses[face] = RT
return poses
def cartesian_to_spherical(self, xyz):
ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
xy = xyz[:,0]**2 + xyz[:,1]**2
z = np.sqrt(xy + xyz[:,2]**2)
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
#ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
azimuth = np.arctan2(xyz[:,1], xyz[:,0])
return np.array([theta, azimuth, z])
def get_T(self, target_RT, cond_RT):
R, T = target_RT[:3, :3], target_RT[:, -1]
T_target = -R.T @ T # change to cam2world
R, T = cond_RT[:3, :3], cond_RT[:, -1]
T_cond = -R.T @ T
theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :])
theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :])
d_theta = theta_target - theta_cond
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
d_z = z_target - z_cond
# d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
return d_theta, d_azimuth
def get_bg_color(self):
if self.bg_color == 'white':
bg_color = np.array([1., 1., 1.], dtype=np.float32)
elif self.bg_color == 'black':
bg_color = np.array([0., 0., 0.], dtype=np.float32)
elif self.bg_color == 'gray':
bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32)
elif self.bg_color == 'random':
bg_color = np.random.rand(3)
elif self.bg_color == 'three_choices':
white = np.array([1., 1., 1.], dtype=np.float32)
black = np.array([0., 0., 0.], dtype=np.float32)
gray = np.array([0.5, 0.5, 0.5], dtype=np.float32)
bg_color = random.choice([white, black, gray])
elif isinstance(self.bg_color, float):
bg_color = np.array([self.bg_color] * 3, dtype=np.float32)
else:
raise NotImplementedError
return bg_color
def load_mask(self, img_path, return_type='np'):
# not using cv2 as may load in uint16 format
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
# pil always returns uint8
img = np.array(Image.open(img_path).resize(self.img_wh))
img = np.float32(img > 0)
assert len(np.shape(img)) == 2
if return_type == "np":
pass
elif return_type == "pt":
img = torch.from_numpy(img)
else:
raise NotImplementedError
return img
def load_image(self, img_path, bg_color, alpha, return_type='np'):
# not using cv2 as may load in uint16 format
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
# pil always returns uint8
img = np.array(Image.open(img_path).resize(self.img_wh))
img = img.astype(np.float32) / 255. # [0, 1]
assert img.shape[-1] == 3 # RGB
if alpha.shape[-1] != 1:
alpha = alpha[:, :, None]
img = img[...,:3] * alpha + bg_color * (1 - alpha)
if return_type == "np":
pass
elif return_type == "pt":
img = torch.from_numpy(img)
else:
raise NotImplementedError
return img
def load_depth(self, img_path, bg_color, alpha, return_type='np'):
# not using cv2 as may load in uint16 format
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
# pil always returns uint8
img = np.array(Image.open(img_path).resize(self.img_wh))
img = img.astype(np.float32) / 65535. # [0, 1]
img[img > 0.4] = 0
img = img / 0.4
assert img.ndim == 2 # depth
img = np.stack([img]*3, axis=-1)
if alpha.shape[-1] != 1:
alpha = alpha[:, :, None]
# print(np.max(img[:, :, 0]))
img = img[...,:3] * alpha + bg_color * (1 - alpha)
if return_type == "np":
pass
elif return_type == "pt":
img = torch.from_numpy(img)
else:
raise NotImplementedError
return img
def load_normal(self, img_path, bg_color, alpha, RT_w2c=None, RT_w2c_cond=None, return_type='np'):
# not using cv2 as may load in uint16 format
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
# pil always returns uint8
normal = np.array(Image.open(img_path).resize(self.img_wh))
assert normal.shape[-1] == 3 # RGB
normal = trans_normal(img2normal(normal), RT_w2c, RT_w2c_cond)
img = (normal*0.5 + 0.5).astype(np.float32) # [0, 1]
if alpha.shape[-1] != 1:
alpha = alpha[:, :, None]
img = img[...,:3] * alpha + bg_color * (1 - alpha)
if return_type == "np":
pass
elif return_type == "pt":
img = torch.from_numpy(img)
else:
raise NotImplementedError
return img
def __len__(self):
return len(self.all_objects)
def __getitem_mix__(self, index, debug_object=None):
if debug_object is not None:
object_name = debug_object #
set_idx = random.sample(range(0, self.groups_num), 1)[0] # without replacement
else:
object_name = self.all_objects[index%len(self.all_objects)]
set_idx = 0
if self.augment_data:
cond_view = random.sample(self.view_types, k=1)[0]
else:
cond_view = 'front'
if random.random() < 0.5:
read_color, read_normal, read_depth = True, False, False
else:
read_color, read_normal, read_depth = False, True, True
read_normal = read_normal & self.read_normal
read_depth = read_depth & self.read_depth
assert (read_color and (read_normal or read_depth)) is False
view_types = self.view_types
cond_w2c = self.fix_cam_poses[cond_view]
tgt_w2cs = [self.fix_cam_poses[view] for view in view_types]
elevations = []
azimuths = []
# get the bg color
bg_color = self.get_bg_color()
cond_alpha = self.load_mask(os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, cond_view)), return_type='np')
img_tensors_in = [
self.load_image(os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, cond_view)), bg_color, cond_alpha, return_type='pt').permute(2, 0, 1)
] * self.num_views
img_tensors_out = []
for view, tgt_w2c in zip(view_types, tgt_w2cs):
img_path = os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, view))
mask_path = os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, view))
normal_path = os.path.join(self.root_dir, object_name[:3], object_name, "normals_%03d_%s.png" % (set_idx, view))
depth_path = os.path.join(self.root_dir, object_name[:3], object_name, "depth_%03d_%s.png" % (set_idx, view))
alpha = self.load_mask(mask_path, return_type='np')
if read_color:
img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt")
img_tensor = img_tensor.permute(2, 0, 1)
img_tensors_out.append(img_tensor)
if read_normal:
normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt").permute(2, 0, 1)
img_tensors_out.append(normal_tensor)
if read_depth:
depth_tensor = self.load_depth(depth_path, bg_color, alpha, return_type="pt").permute(2, 0, 1)
img_tensors_out.append(depth_tensor)
# evelations, azimuths
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
elevations.append(elevation)
azimuths.append(azimuth)
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
elevations = torch.as_tensor(elevations).float().squeeze(1)
azimuths = torch.as_tensor(azimuths).float().squeeze(1)
elevations_cond = torch.as_tensor([0] * self.num_views).float() # fixed only use 4 views to train
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3)
normal_class = torch.tensor([1, 0]).float()
normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0) # (Nv, 2)
color_class = torch.tensor([0, 1]).float()
color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0) # (Nv, 2)
if read_normal or read_depth:
task_embeddings = normal_task_embeddings
if read_color:
task_embeddings = color_task_embeddings
return {
'elevations_cond': elevations_cond,
'elevations_cond_deg': torch.rad2deg(elevations_cond),
'elevations': elevations,
'azimuths': azimuths,
'elevations_deg': torch.rad2deg(elevations),
'azimuths_deg': torch.rad2deg(azimuths),
'imgs_in': img_tensors_in,
'imgs_out': img_tensors_out,
'camera_embeddings': camera_embeddings,
'task_embeddings': task_embeddings
}
def __getitem_random_viewanddomain__(self, index, debug_object=None):
if debug_object is not None:
object_name = debug_object #
set_idx = random.sample(range(0, self.groups_num), 1)[0] # without replacement
else:
object_name = self.all_objects[index%len(self.all_objects)]
set_idx = 0
if self.augment_data:
cond_view = random.sample(self.view_types, k=1)[0]
else:
cond_view = 'front'
if random.random() < 0.5:
read_color, read_normal, read_depth = True, False, False
else:
read_color, read_normal, read_depth = False, True, True
read_normal = read_normal & self.read_normal
read_depth = read_depth & self.read_depth
assert (read_color and (read_normal or read_depth)) is False
view_types = self.view_types
cond_w2c = self.fix_cam_poses[cond_view]
tgt_w2cs = [self.fix_cam_poses[view] for view in view_types]
elevations = []
azimuths = []
# get the bg color
bg_color = self.get_bg_color()
cond_alpha = self.load_mask(os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, cond_view)), return_type='np')
img_tensors_in = [
self.load_image(os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, cond_view)), bg_color, cond_alpha, return_type='pt').permute(2, 0, 1)
] * self.num_views
img_tensors_out = []
random_viewidx = random.randint(0, len(view_types)-1)
for view, tgt_w2c in zip([view_types[random_viewidx]], [tgt_w2cs[random_viewidx]]):
img_path = os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, view))
mask_path = os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, view))
normal_path = os.path.join(self.root_dir, object_name[:3], object_name, "normals_%03d_%s.png" % (set_idx, view))
depth_path = os.path.join(self.root_dir, object_name[:3], object_name, "depth_%03d_%s.png" % (set_idx, view))
alpha = self.load_mask(mask_path, return_type='np')
if read_color:
img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt")
img_tensor = img_tensor.permute(2, 0, 1)
img_tensors_out.append(img_tensor)
if read_normal:
normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt").permute(2, 0, 1)
img_tensors_out.append(normal_tensor)
if read_depth:
depth_tensor = self.load_depth(depth_path, bg_color, alpha, return_type="pt").permute(2, 0, 1)
img_tensors_out.append(depth_tensor)
# evelations, azimuths
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
elevations.append(elevation)
azimuths.append(azimuth)
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
elevations = torch.as_tensor(elevations).float().squeeze(1)
azimuths = torch.as_tensor(azimuths).float().squeeze(1)
elevations_cond = torch.as_tensor([0] * self.num_views).float() # fixed only use 4 views to train
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3)
normal_class = torch.tensor([1, 0]).float()
normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0) # (Nv, 2)
color_class = torch.tensor([0, 1]).float()
color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0) # (Nv, 2)
if read_normal or read_depth:
task_embeddings = normal_task_embeddings
if read_color:
task_embeddings = color_task_embeddings
return {
'elevations_cond': elevations_cond,
'elevations_cond_deg': torch.rad2deg(elevations_cond),
'elevations': elevations,
'azimuths': azimuths,
'elevations_deg': torch.rad2deg(elevations),
'azimuths_deg': torch.rad2deg(azimuths),
'imgs_in': img_tensors_in,
'imgs_out': img_tensors_out,
'camera_embeddings': camera_embeddings,
'task_embeddings': task_embeddings
}
def __getitem_norm__(self, index, debug_object=None):
if debug_object is not None:
object_name = debug_object #
set_idx = random.sample(range(0, self.groups_num), 1)[0] # without replacement
else:
object_name = self.all_objects[index%len(self.all_objects)]
set_idx = 0
if self.augment_data:
cond_view = random.sample(self.view_types, k=1)[0]
else:
cond_view = 'front'
# if self.random_views:
# view_types = ['front']+random.sample(self.view_types[1:], 3)
# else:
# view_types = self.view_types
view_types = self.view_types
cond_w2c = self.fix_cam_poses[cond_view]
tgt_w2cs = [self.fix_cam_poses[view] for view in view_types]
elevations = []
azimuths = []
# get the bg color
bg_color = self.get_bg_color()
cond_alpha = self.load_mask(os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, cond_view)), return_type='np')
img_tensors_in = [
self.load_image(os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, cond_view)), bg_color, cond_alpha, return_type='pt').permute(2, 0, 1)
] * self.num_views
img_tensors_out = []
normal_tensors_out = []
for view, tgt_w2c in zip(view_types, tgt_w2cs):
img_path = os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, view))
mask_path = os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, view))
alpha = self.load_mask(mask_path, return_type='np')
if self.read_color:
img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt")
img_tensor = img_tensor.permute(2, 0, 1)
img_tensors_out.append(img_tensor)
if self.read_normal:
normal_path = os.path.join(self.root_dir, object_name[:3], object_name, "normals_%03d_%s.png" % (set_idx, view))
normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt").permute(2, 0, 1)
normal_tensors_out.append(normal_tensor)
# evelations, azimuths
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
elevations.append(elevation)
azimuths.append(azimuth)
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
if self.read_color:
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
if self.read_normal:
normal_tensors_out = torch.stack(normal_tensors_out, dim=0).float() # (Nv, 3, H, W)
elevations = torch.as_tensor(elevations).float().squeeze(1)
azimuths = torch.as_tensor(azimuths).float().squeeze(1)
elevations_cond = torch.as_tensor([0] * self.num_views).float() # fixed only use 4 views to train
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3)
normal_class = torch.tensor([1, 0]).float()
normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0) # (Nv, 2)
color_class = torch.tensor([0, 1]).float()
color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0) # (Nv, 2)
return {
'elevations_cond': elevations_cond,
'elevations_cond_deg': torch.rad2deg(elevations_cond),
'elevations': elevations,
'azimuths': azimuths,
'elevations_deg': torch.rad2deg(elevations),
'azimuths_deg': torch.rad2deg(azimuths),
'imgs_in': img_tensors_in,
'imgs_out': img_tensors_out,
'normals_out': normal_tensors_out,
'camera_embeddings': camera_embeddings,
'normal_task_embeddings': normal_task_embeddings,
'color_task_embeddings': color_task_embeddings
}
def __getitem__(self, index):
try:
if self.mix_color_normal:
data = self.__getitem_mix__(index)
elif self.random_view_and_domain:
data = self.__getitem_random_viewanddomain__(index)
else:
data = self.__getitem_norm__(index)
return data
except:
print("load error ", self.all_objects[index%len(self.all_objects)] )
return self.backup_data
class ConcatDataset(torch.utils.data.Dataset):
def __init__(self, datasets, weights):
self.datasets = datasets
self.weights = weights
self.num_datasets = len(datasets)
def __getitem__(self, i):
chosen = random.choices(self.datasets, self.weights, k=1)[0]
return chosen[i]
def __len__(self):
return max(len(d) for d in self.datasets)
if __name__ == "__main__":
train_dataset = ObjaverseDataset(
root_dir="/ghome/l5/xxlong/.objaverse/hf-objaverse-v1/renderings",
size=(128, 128),
ext="hdf5",
default_trans=torch.zeros(3),
return_paths=False,
total_view=8,
validation=False,
object_list=None,
views_mode='fourviews'
)
data0 = train_dataset[0]
data1 = train_dataset[50]
# print(data)