Spaces:
Runtime error
Runtime error
Raja
commited on
Commit
•
ce8b148
1
Parent(s):
c04ee86
Adding both checkbox
Browse files
app.py
CHANGED
@@ -62,7 +62,7 @@ def consolidate_score(thermal_result,rgb_result):
|
|
62 |
return output_consol
|
63 |
thermal_check = st.checkbox("Thermal Input")
|
64 |
rgb_check = st.checkbox("RGB Input")
|
65 |
-
|
66 |
if(thermal_check or rgb_check):
|
67 |
if(thermal_check):
|
68 |
|
@@ -82,35 +82,37 @@ if(thermal_check or rgb_check):
|
|
82 |
pipe_thermal = create_pipeline(feature_extractor_thermal,model_thermal)
|
83 |
# opencv_image = np.array(opencv_image)
|
84 |
thermal_result=pipe_thermal(input_image)
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
if(rgb_check):
|
87 |
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
if uploaded_file is not None:
|
92 |
-
input_image = Image.open(uploaded_file)
|
93 |
-
st.write("Input Image...")
|
94 |
-
st.image(input_image)
|
95 |
-
dataset_thermal,dataset_rgb = load_dataset_from_Hugging_Face()
|
96 |
-
labels=dataset_thermal["train"].features["label"].names
|
97 |
-
id2label={k:v for k,v in enumerate(labels)}
|
98 |
-
label2id = {v:k for k,v in enumerate(labels)}
|
99 |
-
feature_extractor_rgb,model_rgb = load_model_from_Hugging_Face("rgb")
|
100 |
-
pipe_rgb = create_pipeline(feature_extractor_rgb,model_rgb)
|
101 |
-
rgb_result=pipe_rgb(input_image)
|
102 |
-
rgb_execution=True
|
103 |
-
if(not rgb_check):
|
104 |
-
rgb_execution=True
|
105 |
-
if(not thermal_check):
|
106 |
-
thermal_execution=True
|
107 |
-
if(thermal_check and rgb_check and thermal_execution and rgb_execution):
|
108 |
-
consolidated_result=get_output_label(consolidate_score(thermal_result,rgb_result))
|
109 |
-
elif(thermal_check and thermal_execution and not rgb_check):
|
110 |
-
consolidated_result=get_output_label(thermal_result)
|
111 |
-
elif(rgb_check and rgb_execution and not thermal_check):
|
112 |
consolidated_result=get_output_label(rgb_result)
|
113 |
-
if(thermal_execution and rgb_execution):
|
114 |
if(consolidated_result!="RiceLeafs_Healthy"):
|
115 |
f = open("remedy.json")
|
116 |
data = json.load(f)
|
@@ -119,4 +121,46 @@ if(thermal_check or rgb_check):
|
|
119 |
for key in i:
|
120 |
st.write(key," : ",i[key])
|
121 |
else:
|
122 |
-
st.write(consolidated_result.split("_")[0]," is ",consolidated_result.split("_")[1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
return output_consol
|
63 |
thermal_check = st.checkbox("Thermal Input")
|
64 |
rgb_check = st.checkbox("RGB Input")
|
65 |
+
both_check = st.checkbox("Both")
|
66 |
if(thermal_check or rgb_check):
|
67 |
if(thermal_check):
|
68 |
|
|
|
82 |
pipe_thermal = create_pipeline(feature_extractor_thermal,model_thermal)
|
83 |
# opencv_image = np.array(opencv_image)
|
84 |
thermal_result=pipe_thermal(input_image)
|
85 |
+
|
86 |
+
|
87 |
+
consolidated_result=get_output_label(thermal_result)
|
88 |
+
if(consolidated_result!="RiceLeafs_Healthy"):
|
89 |
+
f = open("remedy.json")
|
90 |
+
data = json.load(f)
|
91 |
+
for i in data[consolidated_result.split("_")[0]]:
|
92 |
+
if(i["disease_name"]==consolidated_result.split("_")[1]):
|
93 |
+
for key in i:
|
94 |
+
st.write(key," : ",i[key])
|
95 |
+
else:
|
96 |
+
st.write(consolidated_result.split("_")[0]," is ",consolidated_result.split("_")[1])
|
97 |
+
|
98 |
if(rgb_check):
|
99 |
|
100 |
+
st.write("RGB Image file uploader...")
|
101 |
+
uploaded_file = st.file_uploader("Choose a rgb image file", type=["jpg","png"])
|
102 |
+
|
103 |
+
if uploaded_file is not None:
|
104 |
+
input_image = Image.open(uploaded_file)
|
105 |
+
st.write("Input Image...")
|
106 |
+
st.image(input_image)
|
107 |
+
dataset_thermal,dataset_rgb = load_dataset_from_Hugging_Face()
|
108 |
+
labels=dataset_thermal["train"].features["label"].names
|
109 |
+
id2label={k:v for k,v in enumerate(labels)}
|
110 |
+
label2id = {v:k for k,v in enumerate(labels)}
|
111 |
+
feature_extractor_rgb,model_rgb = load_model_from_Hugging_Face("rgb")
|
112 |
+
pipe_rgb = create_pipeline(feature_extractor_rgb,model_rgb)
|
113 |
+
rgb_result=pipe_rgb(input_image)
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
consolidated_result=get_output_label(rgb_result)
|
|
|
116 |
if(consolidated_result!="RiceLeafs_Healthy"):
|
117 |
f = open("remedy.json")
|
118 |
data = json.load(f)
|
|
|
121 |
for key in i:
|
122 |
st.write(key," : ",i[key])
|
123 |
else:
|
124 |
+
st.write(consolidated_result.split("_")[0]," is ",consolidated_result.split("_")[1])
|
125 |
+
|
126 |
+
if(both_check):
|
127 |
+
st.write("Thermal Image file uploader...")
|
128 |
+
uploaded_file = st.file_uploader("Choose a thermal image file", type=["jpg","png"])
|
129 |
+
|
130 |
+
if uploaded_file is not None:
|
131 |
+
input_image = Image.open(uploaded_file)
|
132 |
+
st.write("Input Image...")
|
133 |
+
st.image(input_image)
|
134 |
+
dataset_thermal,dataset_rgb = load_dataset_from_Hugging_Face()
|
135 |
+
labels=dataset_thermal["train"].features["label"].names
|
136 |
+
id2label={k:v for k,v in enumerate(labels)}
|
137 |
+
label2id = {v:k for k,v in enumerate(labels)}
|
138 |
+
|
139 |
+
feature_extractor_thermal,model_thermal = load_model_from_Hugging_Face("thermal")
|
140 |
+
pipe_thermal = create_pipeline(feature_extractor_thermal,model_thermal)
|
141 |
+
# opencv_image = np.array(opencv_image)
|
142 |
+
thermal_result=pipe_thermal(input_image)
|
143 |
+
st.write("RGB Image file uploader...")
|
144 |
+
uploaded_file = st.file_uploader("Choose a rgb image file", type=["jpg","png"])
|
145 |
+
|
146 |
+
if uploaded_file is not None:
|
147 |
+
input_image = Image.open(uploaded_file)
|
148 |
+
st.write("Input Image...")
|
149 |
+
st.image(input_image)
|
150 |
+
dataset_thermal,dataset_rgb = load_dataset_from_Hugging_Face()
|
151 |
+
labels=dataset_thermal["train"].features["label"].names
|
152 |
+
id2label={k:v for k,v in enumerate(labels)}
|
153 |
+
label2id = {v:k for k,v in enumerate(labels)}
|
154 |
+
feature_extractor_rgb,model_rgb = load_model_from_Hugging_Face("rgb")
|
155 |
+
pipe_rgb = create_pipeline(feature_extractor_rgb,model_rgb)
|
156 |
+
rgb_result=pipe_rgb(input_image)
|
157 |
+
consolidated_result=get_output_label(consolidate_score(thermal_result,rgb_result))
|
158 |
+
if(consolidated_result!="RiceLeafs_Healthy"):
|
159 |
+
f = open("remedy.json")
|
160 |
+
data = json.load(f)
|
161 |
+
for i in data[consolidated_result.split("_")[0]]:
|
162 |
+
if(i["disease_name"]==consolidated_result.split("_")[1]):
|
163 |
+
for key in i:
|
164 |
+
st.write(key," : ",i[key])
|
165 |
+
else:
|
166 |
+
st.write(consolidated_result.split("_")[0]," is ",consolidated_result.split("_")[1])
|