Spaces:
Starting
Starting
Felix Konrad
commited on
Commit
·
1323bb7
1
Parent(s):
2ec5753
Added HF_HUB_OFFLINE env variable.
Browse files
app.py
CHANGED
@@ -5,8 +5,12 @@ import gradio as gr
|
|
5 |
from transformers import AutoModel, AutoImageProcessor
|
6 |
from PIL import Image
|
7 |
import torch
|
|
|
8 |
|
9 |
-
|
|
|
|
|
|
|
10 |
state = {
|
11 |
"model_type": None,
|
12 |
"model": None,
|
@@ -14,6 +18,13 @@ state = {
|
|
14 |
"repo_id": None,
|
15 |
}
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def similarity_heatmap(image):
|
19 |
"""
|
@@ -72,6 +83,26 @@ def overlay_cosine_grid_on_image(cos_grid: np.ndarray, image: Image.Image, alpha
|
|
72 |
|
73 |
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
def load_model(repo_id: str, revision: str = None):
|
76 |
"""
|
77 |
Load a Hugging Face model and processor from a repo ID.
|
@@ -108,30 +139,29 @@ def visualize_cosine_heatmap(image: Image):
|
|
108 |
blended = overlay_cosine_grid_on_image(cos_grid, image)
|
109 |
return blended
|
110 |
|
111 |
-
|
|
|
112 |
with gr.Blocks() as demo:
|
113 |
-
gr.Markdown("#
|
114 |
-
|
115 |
-
# TODO: Add drop-down menu (or something else) for user to allow choosing model type (e.g. DINOv2, Google ViT-Base etc.)
|
116 |
-
# ...
|
117 |
|
118 |
with gr.Row():
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
121 |
load_btn = gr.Button("Load Model")
|
122 |
load_status = gr.Textbox(label="Model Status", interactive=False)
|
123 |
-
|
124 |
-
image_input = gr.Image(type="pil", label="Upload Image")
|
125 |
-
image_output = gr.Image(label="Displayed Image")
|
126 |
|
127 |
-
|
|
|
128 |
heatmap_output = gr.Image(label="Cosine Similarity Heatmap")
|
129 |
|
130 |
-
#
|
131 |
-
load_btn.click(fn=
|
132 |
image_input.change(fn=display_image, inputs=image_input, outputs=image_output)
|
133 |
|
134 |
compute_btn = gr.Button("Compute Heatmap")
|
135 |
compute_btn.click(fn=visualize_cosine_heatmap, inputs=image_input, outputs=heatmap_output)
|
136 |
|
137 |
-
demo.launch()
|
|
|
5 |
from transformers import AutoModel, AutoImageProcessor
|
6 |
from PIL import Image
|
7 |
import torch
|
8 |
+
import os
|
9 |
|
10 |
+
|
11 |
+
os.environ["HF_HUB_OFFLINE"] = "0"
|
12 |
+
|
13 |
+
# Global state to store loaded model + processors
|
14 |
state = {
|
15 |
"model_type": None,
|
16 |
"model": None,
|
|
|
18 |
"repo_id": None,
|
19 |
}
|
20 |
|
21 |
+
# Predefined supported models (must also exist locally in your Space repo)
|
22 |
+
SUPPORTED_MODELS = {
|
23 |
+
"Google ViT-Base (patch16-224)": "./models/vit-base-patch16-224",
|
24 |
+
"Facebook DINO (ViT-S/16)": "./models/dino-vits16",
|
25 |
+
"OpenAI CLIP (ViT-B/32)": "./models/clip-vit-base-patch32",
|
26 |
+
}
|
27 |
+
|
28 |
|
29 |
def similarity_heatmap(image):
|
30 |
"""
|
|
|
83 |
|
84 |
|
85 |
|
86 |
+
def load_model_dropdown(choice: str):
|
87 |
+
"""
|
88 |
+
Load one of the predefined models.
|
89 |
+
"""
|
90 |
+
repo_path = SUPPORTED_MODELS[choice]
|
91 |
+
try:
|
92 |
+
model = AutoModel.from_pretrained(repo_path)
|
93 |
+
processor = AutoImageProcessor.from_pretrained(repo_path)
|
94 |
+
model.to("cuda" if torch.cuda.is_available() else "cpu")
|
95 |
+
model.eval()
|
96 |
+
|
97 |
+
state["model"] = model
|
98 |
+
state["processor"] = processor
|
99 |
+
state["repo_id"] = choice
|
100 |
+
return f"Successfully loaded model: {choice}"
|
101 |
+
except Exception as e:
|
102 |
+
return f"Error loading model {choice}: {e}"
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
def load_model(repo_id: str, revision: str = None):
|
107 |
"""
|
108 |
Load a Hugging Face model and processor from a repo ID.
|
|
|
139 |
blended = overlay_cosine_grid_on_image(cos_grid, image)
|
140 |
return blended
|
141 |
|
142 |
+
|
143 |
+
# Gradio UI
|
144 |
with gr.Blocks() as demo:
|
145 |
+
gr.Markdown("# ViT CLS-Visualizer")
|
|
|
|
|
|
|
146 |
|
147 |
with gr.Row():
|
148 |
+
model_choice = gr.Dropdown(
|
149 |
+
choices=list(SUPPORTED_MODELS.keys()),
|
150 |
+
label="Choose a Vision Transformer model",
|
151 |
+
value=list(SUPPORTED_MODELS.keys())[0],
|
152 |
+
)
|
153 |
load_btn = gr.Button("Load Model")
|
154 |
load_status = gr.Textbox(label="Model Status", interactive=False)
|
|
|
|
|
|
|
155 |
|
156 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
157 |
+
image_output = gr.Image(label="Uploaded Image")
|
158 |
heatmap_output = gr.Image(label="Cosine Similarity Heatmap")
|
159 |
|
160 |
+
# Events
|
161 |
+
load_btn.click(fn=load_model_dropdown, inputs=model_choice, outputs=load_status)
|
162 |
image_input.change(fn=display_image, inputs=image_input, outputs=image_output)
|
163 |
|
164 |
compute_btn = gr.Button("Compute Heatmap")
|
165 |
compute_btn.click(fn=visualize_cosine_heatmap, inputs=image_input, outputs=heatmap_output)
|
166 |
|
167 |
+
demo.launch()
|