MotionGPT / mGPT /render /pyrender /hybrik_loc2rot.py
bill-jiang's picture
Init
4409449
import numpy as np
SMPL_BODY_BONES = [-0.0018, -0.2233, 0.0282, 0.0695, -0.0914, -0.0068, -0.0677, -0.0905, -0.0043,
-0.0025, 0.1090, -0.0267, 0.0343, -0.3752, -0.0045, -0.0383, -0.3826, -0.0089,
0.0055, 0.1352, 0.0011, -0.0136, -0.3980, -0.0437, 0.0158, -0.3984, -0.0423,
0.0015, 0.0529, 0.0254, 0.0264, -0.0558, 0.1193, -0.0254, -0.0481, 0.1233,
-0.0028, 0.2139, -0.0429, 0.0788, 0.1217, -0.0341, -0.0818, 0.1188, -0.0386,
0.0052, 0.0650, 0.0513, 0.0910, 0.0305, -0.0089, -0.0960, 0.0326, -0.0091,
0.2596, -0.0128, -0.0275, -0.2537, -0.0133, -0.0214, 0.2492, 0.0090, -0.0012,
-0.2553, 0.0078, -0.0056, 0.0840, -0.0082, -0.0149, -0.0846, -0.0061, -0.0103]
class HybrIKJointsToRotmat:
def __init__(self):
self.naive_hybrik = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]
self.num_nodes = 22
self.parents = [0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 12, 13, 14, 16, 17, 18, 19]
self.child = [-1, 4, 5, 6, 7, 8, 9, 10, 11, -1, -2, -2, 15,
16, 17, -2, 18, 19, 20, 21, -2, -2]
self.bones = np.reshape(np.array(SMPL_BODY_BONES), [24, 3])[:self.num_nodes]
def multi_child_rot(self, t, p,
pose_global_parent):
"""
t: B x 3 x child_num
p: B x 3 x child_num
pose_global_parent: B x 3 x 3
"""
m = np.matmul(t, np.transpose(np.matmul(np.linalg.inv(pose_global_parent), p), [0, 2, 1]))
u, s, vt = np.linalg.svd(m)
r = np.matmul(np.transpose(vt, [0, 2, 1]), np.transpose(u, [0, 2, 1]))
err_det_mask = (np.linalg.det(r) < 0.0).reshape(-1, 1, 1)
id_fix = np.reshape(np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]]),
[1, 3, 3])
r_fix = np.matmul(np.transpose(vt, [0, 2, 1]),
np.matmul(id_fix,
np.transpose(u, [0, 2, 1])))
r = r * (1.0 - err_det_mask) + r_fix * err_det_mask
return r, np.matmul(pose_global_parent, r)
def single_child_rot(self, t, p, pose_global_parent, twist=None):
"""
t: B x 3 x 1
p: B x 3 x 1
pose_global_parent: B x 3 x 3
twist: B x 2 if given, default to None
"""
p_rot = np.matmul(np.linalg.inv(pose_global_parent), p)
cross = np.cross(t, p_rot, axisa=1, axisb=1, axisc=1)
sina = np.linalg.norm(cross, axis=1, keepdims=True) / (np.linalg.norm(t, axis=1, keepdims=True) *
np.linalg.norm(p_rot, axis=1, keepdims=True))
cross = cross / np.linalg.norm(cross, axis=1, keepdims=True)
cosa = np.sum(t * p_rot, axis=1, keepdims=True) / (np.linalg.norm(t, axis=1, keepdims=True) *
np.linalg.norm(p_rot, axis=1, keepdims=True))
sina = np.reshape(sina, [-1, 1, 1])
cosa = np.reshape(cosa, [-1, 1, 1])
skew_sym_t = np.stack([0.0 * cross[:, 0], -cross[:, 2], cross[:, 1],
cross[:, 2], 0.0 * cross[:, 0], -cross[:, 0],
-cross[:, 1], cross[:, 0], 0.0 * cross[:, 0]], 1)
skew_sym_t = np.reshape(skew_sym_t, [-1, 3, 3])
dsw_rotmat = np.reshape(np.eye(3), [1, 3, 3]
) + sina * skew_sym_t + (1.0 - cosa) * np.matmul(skew_sym_t,
skew_sym_t)
if twist is not None:
skew_sym_t = np.stack([0.0 * t[:, 0], -t[:, 2], t[:, 1],
t[:, 2], 0.0 * t[:, 0], -t[:, 0],
-t[:, 1], t[:, 0], 0.0 * t[:, 0]], 1)
skew_sym_t = np.reshape(skew_sym_t, [-1, 3, 3])
sina = np.reshape(twist[:, 1], [-1, 1, 1])
cosa = np.reshape(twist[:, 0], [-1, 1, 1])
dtw_rotmat = np.reshape(np.eye(3), [1, 3, 3]
) + sina * skew_sym_t + (1.0 - cosa) * np.matmul(skew_sym_t,
skew_sym_t)
dsw_rotmat = np.matmul(dsw_rotmat, dtw_rotmat)
return dsw_rotmat, np.matmul(pose_global_parent, dsw_rotmat)
def __call__(self, joints, twist=None):
"""
joints: B x N x 3
twist: B x N x 2 if given, default to None
"""
expand_dim = False
if len(joints.shape) == 2:
expand_dim = True
joints = np.expand_dims(joints, 0)
if twist is not None:
twist = np.expand_dims(twist, 0)
assert (len(joints.shape) == 3)
batch_size = np.shape(joints)[0]
joints_rel = joints - joints[:, self.parents]
joints_hybrik = 0.0 * joints_rel
pose_global = np.zeros([batch_size, self.num_nodes, 3, 3])
pose = np.zeros([batch_size, self.num_nodes, 3, 3])
for i in range(self.num_nodes):
if i == 0:
joints_hybrik[:, 0] = joints[:, 0]
else:
joints_hybrik[:, i] = np.matmul(pose_global[:, self.parents[i]],
np.reshape(self.bones[i], [1, 3, 1])).reshape(-1, 3) + \
joints_hybrik[:, self.parents[i]]
if self.child[i] == -2:
pose[:, i] = pose[:, i] + np.eye(3).reshape(1, 3, 3)
pose_global[:, i] = pose_global[:, self.parents[i]]
continue
if i == 0:
r, rg = self.multi_child_rot(np.transpose(self.bones[[1, 2, 3]].reshape(1, 3, 3), [0, 2, 1]),
np.transpose(joints_rel[:, [1, 2, 3]], [0, 2, 1]),
np.eye(3).reshape(1, 3, 3))
elif i == 9:
r, rg = self.multi_child_rot(np.transpose(self.bones[[12, 13, 14]].reshape(1, 3, 3), [0, 2, 1]),
np.transpose(joints_rel[:, [12, 13, 14]], [0, 2, 1]),
pose_global[:, self.parents[9]])
else:
p = joints_rel[:, self.child[i]]
if self.naive_hybrik[i] == 0:
p = joints[:, self.child[i]] - joints_hybrik[:, i]
twi = None
if twist is not None:
twi = twist[:, i]
r, rg = self.single_child_rot(self.bones[self.child[i]].reshape(1, 3, 1),
p.reshape(-1, 3, 1),
pose_global[:, self.parents[i]],
twi)
pose[:, i] = r
pose_global[:, i] = rg
if expand_dim:
pose = pose[0]
return pose
if __name__ == "__main__":
jts2rot_hybrik = HybrIKJointsToRotmat()
joints = np.array(SMPL_BODY_BONES).reshape(1, 24, 3)[:, :22]
parents = [0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 12, 13, 14, 16, 17, 18, 19]
for i in range(1, 22):
joints[:, i] = joints[:, i] + joints[:, parents[i]]
pose = jts2rot_hybrik(joints)
print(pose)