|
|
|
""" |
|
Various positional encodings for the transformer. |
|
""" |
|
import math |
|
from typing import List, Optional |
|
|
|
import numpy as np |
|
import torch |
|
from torch import Tensor, nn |
|
|
|
|
|
|
|
|
|
class NestedTensor(object): |
|
|
|
def __init__(self, tensors, mask: Optional[Tensor]): |
|
self.tensors = tensors |
|
self.mask = mask |
|
|
|
def to(self, device): |
|
|
|
cast_tensor = self.tensors.to(device) |
|
mask = self.mask |
|
if mask is not None: |
|
assert mask is not None |
|
cast_mask = mask.to(device) |
|
else: |
|
cast_mask = None |
|
return NestedTensor(cast_tensor, cast_mask) |
|
|
|
def decompose(self): |
|
return self.tensors, self.mask |
|
|
|
def __repr__(self): |
|
return str(self.tensors) |
|
|
|
|
|
class PositionEmbeddingSine(nn.Module): |
|
""" |
|
This is a more standard version of the position embedding, very similar to the one |
|
used by the Attention is all you need paper, generalized to work on images. |
|
""" |
|
|
|
def __init__(self, |
|
num_pos_feats=64, |
|
temperature=10000, |
|
normalize=False, |
|
scale=None): |
|
super().__init__() |
|
self.num_pos_feats = num_pos_feats |
|
self.temperature = temperature |
|
self.normalize = normalize |
|
if scale is not None and normalize is False: |
|
raise ValueError("normalize should be True if scale is passed") |
|
if scale is None: |
|
scale = 2 * math.pi |
|
self.scale = scale |
|
|
|
def forward(self, tensor_list: NestedTensor): |
|
x = tensor_list.tensors |
|
mask = tensor_list.mask |
|
assert mask is not None |
|
not_mask = ~mask |
|
y_embed = not_mask.cumsum(1, dtype=torch.float32) |
|
x_embed = not_mask.cumsum(2, dtype=torch.float32) |
|
if self.normalize: |
|
eps = 1e-6 |
|
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale |
|
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale |
|
|
|
dim_t = torch.arange(self.num_pos_feats, |
|
dtype=torch.float32, |
|
device=x.device) |
|
dim_t = self.temperature**(2 * (dim_t // 2) / self.num_pos_feats) |
|
|
|
pos_x = x_embed[:, :, :, None] / dim_t |
|
pos_y = y_embed[:, :, :, None] / dim_t |
|
pos_x = torch.stack( |
|
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), |
|
dim=4).flatten(3) |
|
pos_y = torch.stack( |
|
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), |
|
dim=4).flatten(3) |
|
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) |
|
return pos |
|
|
|
|
|
class PositionEmbeddingLearned(nn.Module): |
|
""" |
|
Absolute pos embedding, learned. |
|
""" |
|
|
|
def __init__(self, num_pos_feats=256): |
|
super().__init__() |
|
self.row_embed = nn.Embedding(50, num_pos_feats) |
|
self.col_embed = nn.Embedding(50, num_pos_feats) |
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
nn.init.uniform_(self.row_embed.weight) |
|
nn.init.uniform_(self.col_embed.weight) |
|
|
|
def forward(self, tensor_list: NestedTensor): |
|
x = tensor_list.tensors |
|
h, w = x.shape[-2:] |
|
i = torch.arange(w, device=x.device) |
|
j = torch.arange(h, device=x.device) |
|
x_emb = self.col_embed(i) |
|
y_emb = self.row_embed(j) |
|
pos = torch.cat([ |
|
x_emb.unsqueeze(0).repeat(h, 1, 1), |
|
y_emb.unsqueeze(1).repeat(1, w, 1), |
|
], |
|
dim=-1).permute(2, 0, 1).unsqueeze(0).repeat( |
|
x.shape[0], 1, 1, 1) |
|
return pos |
|
|
|
|
|
class PositionEmbeddingSine1D(nn.Module): |
|
|
|
def __init__(self, d_model, max_len=500, batch_first=False): |
|
super().__init__() |
|
self.batch_first = batch_first |
|
|
|
pe = torch.zeros(max_len, d_model) |
|
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) |
|
div_term = torch.exp( |
|
torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model)) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
pe = pe.unsqueeze(0).transpose(0, 1) |
|
|
|
self.register_buffer('pe', pe) |
|
|
|
def forward(self, x): |
|
|
|
if self.batch_first: |
|
pos = self.pe.permute(1, 0, 2)[:, :x.shape[1], :] |
|
else: |
|
pos = self.pe[:x.shape[0], :] |
|
return pos |
|
|
|
|
|
class PositionEmbeddingLearned1D(nn.Module): |
|
|
|
def __init__(self, d_model, max_len=500, batch_first=False): |
|
super().__init__() |
|
self.batch_first = batch_first |
|
|
|
|
|
self.pe = nn.Parameter(torch.zeros(max_len, 1, d_model)) |
|
|
|
|
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
nn.init.uniform_(self.pe) |
|
|
|
def forward(self, x): |
|
|
|
if self.batch_first: |
|
pos = self.pe.permute(1, 0, 2)[:, :x.shape[1], :] |
|
else: |
|
x = x + self.pe[:x.shape[0], :] |
|
return x |
|
|
|
|
|
|
|
def build_position_encoding(N_steps, |
|
position_embedding="sine", |
|
embedding_dim="1D"): |
|
|
|
if embedding_dim == "1D": |
|
if position_embedding in ('v2', 'sine'): |
|
position_embedding = PositionEmbeddingSine1D(N_steps) |
|
elif position_embedding in ('v3', 'learned'): |
|
position_embedding = PositionEmbeddingLearned1D(N_steps) |
|
else: |
|
raise ValueError(f"not supported {position_embedding}") |
|
elif embedding_dim == "2D": |
|
if position_embedding in ('v2', 'sine'): |
|
|
|
position_embedding = PositionEmbeddingSine(N_steps, normalize=True) |
|
elif position_embedding in ('v3', 'learned'): |
|
position_embedding = PositionEmbeddingLearned(N_steps) |
|
else: |
|
raise ValueError(f"not supported {position_embedding}") |
|
else: |
|
raise ValueError(f"not supported {embedding_dim}") |
|
|
|
return position_embedding |
|
|