|
from typing import List |
|
import os |
|
import torch |
|
from torch import Tensor |
|
from torchmetrics import Metric |
|
from torchmetrics.functional import pairwise_euclidean_distance |
|
from .utils import * |
|
from mGPT.config import instantiate_from_config |
|
|
|
class TM2TMetrics(Metric): |
|
def __init__(self, |
|
cfg, |
|
dataname='humanml3d', |
|
top_k=3, |
|
R_size=32, |
|
diversity_times=300, |
|
dist_sync_on_step=True, |
|
**kwargs): |
|
super().__init__(dist_sync_on_step=dist_sync_on_step) |
|
|
|
self.cfg = cfg |
|
self.dataname = dataname |
|
self.name = "matching, fid, and diversity scores" |
|
self.top_k = top_k |
|
self.R_size = R_size |
|
self.text = 'lm' in cfg.TRAIN.STAGE and cfg.model.params.task == 't2m' |
|
self.diversity_times = diversity_times |
|
|
|
self.add_state("count", default=torch.tensor(0), dist_reduce_fx="sum") |
|
self.add_state("count_seq", |
|
default=torch.tensor(0), |
|
dist_reduce_fx="sum") |
|
|
|
self.metrics = [] |
|
|
|
|
|
if self.text: |
|
self.add_state("Matching_score", |
|
default=torch.tensor(0.0), |
|
dist_reduce_fx="sum") |
|
self.add_state("gt_Matching_score", |
|
default=torch.tensor(0.0), |
|
dist_reduce_fx="sum") |
|
self.Matching_metrics = ["Matching_score", "gt_Matching_score"] |
|
for k in range(1, top_k + 1): |
|
self.add_state( |
|
f"R_precision_top_{str(k)}", |
|
default=torch.tensor(0.0), |
|
dist_reduce_fx="sum", |
|
) |
|
self.Matching_metrics.append(f"R_precision_top_{str(k)}") |
|
for k in range(1, top_k + 1): |
|
self.add_state( |
|
f"gt_R_precision_top_{str(k)}", |
|
default=torch.tensor(0.0), |
|
dist_reduce_fx="sum", |
|
) |
|
self.Matching_metrics.append(f"gt_R_precision_top_{str(k)}") |
|
self.metrics.extend(self.Matching_metrics) |
|
|
|
|
|
self.add_state("FID", default=torch.tensor(0.0), dist_reduce_fx="sum") |
|
self.metrics.append("FID") |
|
|
|
|
|
self.add_state("Diversity", |
|
default=torch.tensor(0.0), |
|
dist_reduce_fx="sum") |
|
self.add_state("gt_Diversity", |
|
default=torch.tensor(0.0), |
|
dist_reduce_fx="sum") |
|
self.metrics.extend(["Diversity", "gt_Diversity"]) |
|
|
|
|
|
self.add_state("text_embeddings", default=[], dist_reduce_fx=None) |
|
self.add_state("recmotion_embeddings", default=[], dist_reduce_fx=None) |
|
self.add_state("gtmotion_embeddings", default=[], dist_reduce_fx=None) |
|
|
|
|
|
self._get_t2m_evaluator(cfg) |
|
|
|
def _get_t2m_evaluator(self, cfg): |
|
""" |
|
load T2M text encoder and motion encoder for evaluating |
|
""" |
|
|
|
self.t2m_textencoder = instantiate_from_config(cfg.METRIC.TM2T.t2m_textencoder) |
|
self.t2m_moveencoder = instantiate_from_config(cfg.METRIC.TM2T.t2m_moveencoder) |
|
self.t2m_motionencoder = instantiate_from_config(cfg.METRIC.TM2T.t2m_motionencoder) |
|
|
|
|
|
|
|
if self.dataname == "kit": |
|
dataname = "kit" |
|
else: |
|
dataname = "t2m" |
|
|
|
t2m_checkpoint = torch.load(os.path.join( |
|
cfg.METRIC.TM2T.t2m_path, dataname, "text_mot_match/model/finest.tar"), |
|
map_location="cpu") |
|
|
|
self.t2m_textencoder.load_state_dict(t2m_checkpoint["text_encoder"]) |
|
self.t2m_moveencoder.load_state_dict( |
|
t2m_checkpoint["movement_encoder"]) |
|
self.t2m_motionencoder.load_state_dict( |
|
t2m_checkpoint["motion_encoder"]) |
|
|
|
|
|
self.t2m_textencoder.eval() |
|
self.t2m_moveencoder.eval() |
|
self.t2m_motionencoder.eval() |
|
for p in self.t2m_textencoder.parameters(): |
|
p.requires_grad = False |
|
for p in self.t2m_moveencoder.parameters(): |
|
p.requires_grad = False |
|
for p in self.t2m_motionencoder.parameters(): |
|
p.requires_grad = False |
|
|
|
@torch.no_grad() |
|
def compute(self, sanity_flag): |
|
count = self.count.item() |
|
count_seq = self.count_seq.item() |
|
|
|
|
|
metrics = {metric: getattr(self, metric) for metric in self.metrics} |
|
|
|
|
|
if sanity_flag: |
|
return metrics |
|
|
|
|
|
shuffle_idx = torch.randperm(count_seq) |
|
|
|
all_genmotions = torch.cat(self.recmotion_embeddings, |
|
axis=0).cpu()[shuffle_idx, :] |
|
all_gtmotions = torch.cat(self.gtmotion_embeddings, |
|
axis=0).cpu()[shuffle_idx, :] |
|
|
|
|
|
if self.text: |
|
all_texts = torch.cat(self.text_embeddings, |
|
axis=0).cpu()[shuffle_idx, :] |
|
|
|
assert count_seq > self.R_size |
|
top_k_mat = torch.zeros((self.top_k, )) |
|
for i in range(count_seq // self.R_size): |
|
|
|
group_texts = all_texts[i * self.R_size:(i + 1) * self.R_size] |
|
|
|
group_motions = all_genmotions[i * self.R_size:(i + 1) * |
|
self.R_size] |
|
|
|
|
|
dist_mat = euclidean_distance_matrix( |
|
group_texts, group_motions).nan_to_num() |
|
|
|
self.Matching_score += dist_mat.trace() |
|
argsmax = torch.argsort(dist_mat, dim=1) |
|
top_k_mat += calculate_top_k(argsmax, |
|
top_k=self.top_k).sum(axis=0) |
|
|
|
R_count = count_seq // self.R_size * self.R_size |
|
metrics["Matching_score"] = self.Matching_score / R_count |
|
for k in range(self.top_k): |
|
metrics[f"R_precision_top_{str(k+1)}"] = top_k_mat[k] / R_count |
|
|
|
|
|
assert count_seq > self.R_size |
|
top_k_mat = torch.zeros((self.top_k, )) |
|
for i in range(count_seq // self.R_size): |
|
|
|
group_texts = all_texts[i * self.R_size:(i + 1) * self.R_size] |
|
|
|
group_motions = all_gtmotions[i * self.R_size:(i + 1) * |
|
self.R_size] |
|
|
|
dist_mat = euclidean_distance_matrix( |
|
group_texts, group_motions).nan_to_num() |
|
|
|
self.gt_Matching_score += dist_mat.trace() |
|
argsmax = torch.argsort(dist_mat, dim=1) |
|
top_k_mat += calculate_top_k(argsmax, |
|
top_k=self.top_k).sum(axis=0) |
|
metrics["gt_Matching_score"] = self.gt_Matching_score / R_count |
|
for k in range(self.top_k): |
|
metrics[f"gt_R_precision_top_{str(k+1)}"] = top_k_mat[k] / R_count |
|
|
|
|
|
all_genmotions = all_genmotions.numpy() |
|
all_gtmotions = all_gtmotions.numpy() |
|
|
|
|
|
mu, cov = calculate_activation_statistics_np(all_genmotions) |
|
gt_mu, gt_cov = calculate_activation_statistics_np(all_gtmotions) |
|
metrics["FID"] = calculate_frechet_distance_np(gt_mu, gt_cov, mu, cov) |
|
|
|
|
|
assert count_seq > self.diversity_times |
|
metrics["Diversity"] = calculate_diversity_np(all_genmotions, |
|
self.diversity_times) |
|
metrics["gt_Diversity"] = calculate_diversity_np( |
|
all_gtmotions, self.diversity_times) |
|
|
|
|
|
self.reset() |
|
|
|
return {**metrics} |
|
|
|
@torch.no_grad() |
|
def update(self, |
|
feats_ref: Tensor, |
|
feats_rst: Tensor, |
|
lengths_ref: List[int], |
|
lengths_rst: List[int], |
|
word_embs: Tensor = None, |
|
pos_ohot: Tensor = None, |
|
text_lengths: Tensor = None): |
|
|
|
self.count += sum(lengths_ref) |
|
self.count_seq += len(lengths_ref) |
|
|
|
|
|
align_idx = np.argsort(lengths_ref)[::-1].copy() |
|
feats_ref = feats_ref[align_idx] |
|
lengths_ref = np.array(lengths_ref)[align_idx] |
|
gtmotion_embeddings = self.get_motion_embeddings( |
|
feats_ref, lengths_ref) |
|
cache = [0] * len(lengths_ref) |
|
for i in range(len(lengths_ref)): |
|
cache[align_idx[i]] = gtmotion_embeddings[i:i + 1] |
|
self.gtmotion_embeddings.extend(cache) |
|
|
|
align_idx = np.argsort(lengths_rst)[::-1].copy() |
|
feats_rst = feats_rst[align_idx] |
|
lengths_rst = np.array(lengths_rst)[align_idx] |
|
recmotion_embeddings = self.get_motion_embeddings( |
|
feats_rst, lengths_rst) |
|
cache = [0] * len(lengths_rst) |
|
for i in range(len(lengths_rst)): |
|
cache[align_idx[i]] = recmotion_embeddings[i:i + 1] |
|
self.recmotion_embeddings.extend(cache) |
|
|
|
|
|
if self.text: |
|
text_emb = self.t2m_textencoder(word_embs, pos_ohot, text_lengths) |
|
text_embeddings = torch.flatten(text_emb, start_dim=1).detach() |
|
self.text_embeddings.append(text_embeddings) |
|
|
|
def get_motion_embeddings(self, feats: Tensor, lengths: List[int]): |
|
m_lens = torch.tensor(lengths) |
|
m_lens = torch.div(m_lens, |
|
self.cfg.DATASET.HUMANML3D.UNIT_LEN, |
|
rounding_mode="floor") |
|
m_lens = m_lens // self.cfg.DATASET.HUMANML3D.UNIT_LEN |
|
mov = self.t2m_moveencoder(feats[..., :-4]).detach() |
|
emb = self.t2m_motionencoder(mov, m_lens) |
|
|
|
|
|
return torch.flatten(emb, start_dim=1).detach() |
|
|