|
import torch |
|
|
|
def load_pretrained(cfg, model, logger, phase="train"): |
|
logger.info(f"Loading pretrain model from {cfg.TRAIN.PRETRAINED}") |
|
if phase == "train": |
|
ckpt_path = cfg.TRAIN.PRETRAINED |
|
elif phase == "test": |
|
ckpt_path = cfg.TEST.CHECKPOINTS |
|
|
|
state_dict = torch.load(ckpt_path, map_location="cpu")["state_dict"] |
|
model.load_state_dict(state_dict, strict=True) |
|
return model |
|
|
|
|
|
def load_pretrained_vae(cfg, model, logger): |
|
state_dict = torch.load(cfg.TRAIN.PRETRAINED_VAE, |
|
map_location="cpu")['state_dict'] |
|
logger.info(f"Loading pretrain vae from {cfg.TRAIN.PRETRAINED_VAE}") |
|
|
|
from collections import OrderedDict |
|
vae_dict = OrderedDict() |
|
for k, v in state_dict.items(): |
|
if "motion_vae" in k: |
|
name = k.replace("motion_vae.", "") |
|
vae_dict[name] = v |
|
elif "vae" in k: |
|
name = k.replace("vae.", "") |
|
vae_dict[name] = v |
|
if hasattr(model, 'vae'): |
|
model.vae.load_state_dict(vae_dict, strict=True) |
|
else: |
|
model.motion_vae.load_state_dict(vae_dict, strict=True) |
|
|
|
return model |
|
|