|
|
import os |
|
|
import sys |
|
|
|
|
|
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) |
|
|
|
|
|
import torch |
|
|
from transformers import MBart50Tokenizer, MBartForConditionalGeneration |
|
|
from datasets import load_dataset |
|
|
from peft import LoraConfig, get_peft_model, TaskType |
|
|
from dotenv import load_dotenv |
|
|
import wandb |
|
|
import json |
|
|
from utils.helper import TextPreprocessor |
|
|
from utils.trainer import train_model |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
|
|
|
class MBart50Finetuner: |
|
|
"""Class to handle fine-tuning of mBART50 model for translation tasks.""" |
|
|
|
|
|
def __init__(self, config_path="config.json"): |
|
|
"""Initialize with configuration file.""" |
|
|
with open(config_path, "r") as json_file: |
|
|
cfg = json.load(json_file) |
|
|
|
|
|
self.args = cfg["mbart50"]["args"] |
|
|
self.lora_config = cfg["mbart50"]["lora_config"] |
|
|
|
|
|
|
|
|
self.max_len = self.args["max_len"] |
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
self.id = self.args["id"] |
|
|
self.initial_learning_rate = self.args["initial_learning_rate"] |
|
|
self.model_name = self.args["model_name"] |
|
|
self.src_lang = self.args["src_lang"] |
|
|
self.tgt_lang = self.args["tgt_lang"] |
|
|
self.wandb_project = self.args["wandb_project"] |
|
|
self.output_dir = self.args["output_dir"] |
|
|
self.name = "mbart50" |
|
|
|
|
|
self.model = None |
|
|
self.tokenizer = None |
|
|
self.train_dataset = None |
|
|
self.val_dataset = None |
|
|
self.test_dataset = None |
|
|
|
|
|
def setup_wandb(self): |
|
|
"""Initialize Weights & Biases for experiment tracking.""" |
|
|
wandb.login(key=os.environ.get("WANDB_API"), relogin=True) |
|
|
wandb.init(project=self.wandb_project, name="mbart50-finetune-lora") |
|
|
|
|
|
def load_model_and_tokenizer(self): |
|
|
"""Load the mBART model and tokenizer.""" |
|
|
self.tokenizer = MBart50Tokenizer.from_pretrained(self.model_name) |
|
|
self.model = MBartForConditionalGeneration.from_pretrained(self.model_name) |
|
|
self.tokenizer.src_lang = self.src_lang |
|
|
self.tokenizer.tgt_lang = self.tgt_lang |
|
|
|
|
|
def load_datasets(self): |
|
|
"""Load training, validation, and test datasets.""" |
|
|
data_files = { |
|
|
"train": "data/train_cleaned_dataset.csv", |
|
|
"test": "data/test_cleaned_dataset.csv", |
|
|
"val": "data/val_cleaned_dataset.csv", |
|
|
} |
|
|
|
|
|
if self.id is not None: |
|
|
training_parts = [ |
|
|
f"[{(i * 200000) + 1 if i > 0 else ''}:{(i + 1) * 200000 if i < 10 else ''}]" |
|
|
for i in range(11) |
|
|
] |
|
|
self.train_dataset = load_dataset( |
|
|
"csv", data_files=data_files, split=f"train{training_parts[self.id]}" |
|
|
) |
|
|
self.test_dataset = load_dataset("csv", data_files=data_files, split="test") |
|
|
self.val_dataset = load_dataset( |
|
|
"csv", data_files=data_files, split="val[:20000]" |
|
|
) |
|
|
else: |
|
|
self.train_dataset = load_dataset( |
|
|
"csv", data_files=data_files, split="train[:1000000]" |
|
|
) |
|
|
self.test_dataset = load_dataset("csv", data_files=data_files, split="test[:100000]") |
|
|
self.val_dataset = load_dataset("csv", data_files=data_files, split="val[:100000]") |
|
|
|
|
|
def configure_lora(self): |
|
|
"""Apply LoRA configuration to the model.""" |
|
|
lora_config = LoraConfig( |
|
|
task_type=TaskType.SEQ_2_SEQ_LM, |
|
|
r=self.lora_config["r"], |
|
|
lora_alpha=self.lora_config["lora_alpha"], |
|
|
target_modules=self.lora_config["target_modules"], |
|
|
lora_dropout=self.lora_config["lora_dropout"], |
|
|
) |
|
|
self.model = get_peft_model(self.model, lora_config) |
|
|
|
|
|
def finetune(self): |
|
|
"""Orchestrate the fine-tuning process.""" |
|
|
self.setup_wandb() |
|
|
self.load_model_and_tokenizer() |
|
|
self.load_datasets() |
|
|
|
|
|
preprocessor = TextPreprocessor(self.tokenizer, self.max_len, name="mbart50") |
|
|
tokenized_train_dataset = preprocessor.preprocess_dataset(self.train_dataset) |
|
|
tokenized_eval_dataset = preprocessor.preprocess_dataset(self.val_dataset) |
|
|
|
|
|
self.configure_lora() |
|
|
self.model.print_trainable_parameters() |
|
|
|
|
|
train_model( |
|
|
model=self.model, |
|
|
tokenizer=self.tokenizer, |
|
|
train_dataset=tokenized_train_dataset, |
|
|
eval_dataset=tokenized_eval_dataset, |
|
|
output_dir=self.output_dir, |
|
|
initial_learning_rate=self.initial_learning_rate, |
|
|
name=self.name, |
|
|
val_dataset=self.val_dataset, |
|
|
) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
finetuner = MBart50Finetuner() |
|
|
finetuner.finetune() |
|
|
|