Spaces:
Running
on
A10G
Running
on
A10G
defaults: | |
- base | |
- _self_ | |
project: text2semantic_finetune_dual_ar | |
max_length: 4096 | |
pretrained_ckpt_path: checkpoints/fish-speech-1.4 | |
# Lightning Trainer | |
trainer: | |
accumulate_grad_batches: 1 | |
gradient_clip_val: 1.0 | |
gradient_clip_algorithm: "norm" | |
max_steps: 1000 | |
precision: bf16-true | |
limit_val_batches: 10 | |
val_check_interval: 100 | |
# Dataset Configuration | |
tokenizer: | |
_target_: transformers.AutoTokenizer.from_pretrained | |
pretrained_model_name_or_path: ${pretrained_ckpt_path} | |
# Dataset Configuration | |
train_dataset: | |
_target_: fish_speech.datasets.semantic.AutoTextSemanticInstructionDataset | |
proto_files: | |
- data/protos | |
tokenizer: ${tokenizer} | |
causal: true | |
max_length: ${max_length} | |
use_speaker: false | |
interactive_prob: 0.7 | |
val_dataset: | |
_target_: fish_speech.datasets.semantic.AutoTextSemanticInstructionDataset | |
proto_files: | |
- data/protos | |
tokenizer: ${tokenizer} | |
causal: true | |
max_length: ${max_length} | |
use_speaker: false | |
interactive_prob: 0.7 | |
data: | |
_target_: fish_speech.datasets.semantic.SemanticDataModule | |
train_dataset: ${train_dataset} | |
val_dataset: ${val_dataset} | |
num_workers: 4 | |
batch_size: 8 | |
tokenizer: ${tokenizer} | |
max_length: ${max_length} | |
# Model Configuration | |
model: | |
_target_: fish_speech.models.text2semantic.lit_module.TextToSemantic | |
model: | |
_target_: fish_speech.models.text2semantic.llama.BaseTransformer.from_pretrained | |
path: ${pretrained_ckpt_path} | |
load_weights: true | |
max_length: ${max_length} | |
lora_config: null | |
optimizer: | |
_target_: torch.optim.AdamW | |
_partial_: true | |
lr: 1e-4 | |
weight_decay: 0 | |
betas: [0.9, 0.95] | |
eps: 1e-5 | |
lr_scheduler: | |
_target_: torch.optim.lr_scheduler.LambdaLR | |
_partial_: true | |
lr_lambda: | |
_target_: fish_speech.scheduler.get_constant_schedule_with_warmup_lr_lambda | |
_partial_: true | |
num_warmup_steps: 10 | |
# Callbacks | |
callbacks: | |
model_checkpoint: | |
every_n_train_steps: ${trainer.val_check_interval} | |