PoTaTo721's picture
update to 1.2
69e8a46
raw
history blame
14.2 kB
import base64
import io
import json
import queue
import random
import traceback
import wave
from argparse import ArgumentParser
from http import HTTPStatus
from pathlib import Path
from typing import Annotated, Literal, Optional
import librosa
import numpy as np
import pyrootutils
import soundfile as sf
import torch
from kui.asgi import (
Body,
HTTPException,
HttpView,
JSONResponse,
Kui,
OpenAPI,
StreamResponse,
)
from kui.asgi.routing import MultimethodRoutes
from loguru import logger
from pydantic import BaseModel, Field
pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)
# from fish_speech.models.vqgan.lit_module import VQGAN
from fish_speech.models.vqgan.modules.firefly import FireflyArchitecture
from tools.auto_rerank import batch_asr, calculate_wer, is_chinese, load_model
from tools.llama.generate import (
GenerateRequest,
GenerateResponse,
WrappedGenerateResponse,
launch_thread_safe_queue,
)
from tools.vqgan.inference import load_model as load_decoder_model
def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1):
buffer = io.BytesIO()
with wave.open(buffer, "wb") as wav_file:
wav_file.setnchannels(channels)
wav_file.setsampwidth(bit_depth // 8)
wav_file.setframerate(sample_rate)
wav_header_bytes = buffer.getvalue()
buffer.close()
return wav_header_bytes
# Define utils for web server
async def http_execption_handler(exc: HTTPException):
return JSONResponse(
dict(
statusCode=exc.status_code,
message=exc.content,
error=HTTPStatus(exc.status_code).phrase,
),
exc.status_code,
exc.headers,
)
async def other_exception_handler(exc: "Exception"):
traceback.print_exc()
status = HTTPStatus.INTERNAL_SERVER_ERROR
return JSONResponse(
dict(statusCode=status, message=str(exc), error=status.phrase),
status,
)
def load_audio(reference_audio, sr):
if len(reference_audio) > 255 or not Path(reference_audio).exists():
try:
audio_data = base64.b64decode(reference_audio)
reference_audio = io.BytesIO(audio_data)
except base64.binascii.Error:
raise ValueError("Invalid path or base64 string")
audio, _ = librosa.load(reference_audio, sr=sr, mono=True)
return audio
def encode_reference(*, decoder_model, reference_audio, enable_reference_audio):
if enable_reference_audio and reference_audio is not None:
# Load audios, and prepare basic info here
reference_audio_content = load_audio(
reference_audio, decoder_model.spec_transform.sample_rate
)
audios = torch.from_numpy(reference_audio_content).to(decoder_model.device)[
None, None, :
]
audio_lengths = torch.tensor(
[audios.shape[2]], device=decoder_model.device, dtype=torch.long
)
logger.info(
f"Loaded audio with {audios.shape[2] / decoder_model.spec_transform.sample_rate:.2f} seconds"
)
# VQ Encoder
if isinstance(decoder_model, FireflyArchitecture):
prompt_tokens = decoder_model.encode(audios, audio_lengths)[0][0]
logger.info(f"Encoded prompt: {prompt_tokens.shape}")
else:
prompt_tokens = None
logger.info("No reference audio provided")
return prompt_tokens
def decode_vq_tokens(
*,
decoder_model,
codes,
):
feature_lengths = torch.tensor([codes.shape[1]], device=decoder_model.device)
logger.info(f"VQ features: {codes.shape}")
if isinstance(decoder_model, FireflyArchitecture):
# VQGAN Inference
return decoder_model.decode(
indices=codes[None],
feature_lengths=feature_lengths,
).squeeze()
raise ValueError(f"Unknown model type: {type(decoder_model)}")
routes = MultimethodRoutes(base_class=HttpView)
def get_random_paths(base_path, data, speaker, emotion):
if base_path and data and speaker and emotion and (Path(base_path).exists()):
if speaker in data and emotion in data[speaker]:
files = data[speaker][emotion]
lab_files = [f for f in files if f.endswith(".lab")]
wav_files = [f for f in files if f.endswith(".wav")]
if lab_files and wav_files:
selected_lab = random.choice(lab_files)
selected_wav = random.choice(wav_files)
lab_path = Path(base_path) / speaker / emotion / selected_lab
wav_path = Path(base_path) / speaker / emotion / selected_wav
if lab_path.exists() and wav_path.exists():
return lab_path, wav_path
return None, None
def load_json(json_file):
if not json_file:
logger.info("Not using a json file")
return None
try:
with open(json_file, "r", encoding="utf-8") as file:
data = json.load(file)
except FileNotFoundError:
logger.warning(f"ref json not found: {json_file}")
data = None
except Exception as e:
logger.warning(f"Loading json failed: {e}")
data = None
return data
class InvokeRequest(BaseModel):
text: str = "你说的对, 但是原神是一款由米哈游自主研发的开放世界手游."
reference_text: Optional[str] = None
reference_audio: Optional[str] = None
max_new_tokens: int = 1024
chunk_length: Annotated[int, Field(ge=0, le=500, strict=True)] = 100
top_p: Annotated[float, Field(ge=0.1, le=1.0, strict=True)] = 0.7
repetition_penalty: Annotated[float, Field(ge=0.9, le=2.0, strict=True)] = 1.2
temperature: Annotated[float, Field(ge=0.1, le=1.0, strict=True)] = 0.7
emotion: Optional[str] = None
format: Literal["wav", "mp3", "flac"] = "wav"
streaming: bool = False
ref_json: Optional[str] = "ref_data.json"
ref_base: Optional[str] = "ref_data"
speaker: Optional[str] = None
def get_content_type(audio_format):
if audio_format == "wav":
return "audio/wav"
elif audio_format == "flac":
return "audio/flac"
elif audio_format == "mp3":
return "audio/mpeg"
else:
return "application/octet-stream"
@torch.inference_mode()
def inference(req: InvokeRequest):
# Parse reference audio aka prompt
prompt_tokens = None
ref_data = load_json(req.ref_json)
ref_base = req.ref_base
lab_path, wav_path = get_random_paths(ref_base, ref_data, req.speaker, req.emotion)
if lab_path and wav_path:
with open(lab_path, "r", encoding="utf-8") as lab_file:
ref_text = lab_file.read()
req.reference_audio = wav_path
req.reference_text = ref_text
logger.info("ref_path: " + str(wav_path))
logger.info("ref_text: " + ref_text)
# Parse reference audio aka prompt
prompt_tokens = encode_reference(
decoder_model=decoder_model,
reference_audio=req.reference_audio,
enable_reference_audio=req.reference_audio is not None,
)
logger.info(f"ref_text: {req.reference_text}")
# LLAMA Inference
request = dict(
device=decoder_model.device,
max_new_tokens=req.max_new_tokens,
text=req.text,
top_p=req.top_p,
repetition_penalty=req.repetition_penalty,
temperature=req.temperature,
compile=args.compile,
iterative_prompt=req.chunk_length > 0,
chunk_length=req.chunk_length,
max_length=2048,
prompt_tokens=prompt_tokens,
prompt_text=req.reference_text,
)
response_queue = queue.Queue()
llama_queue.put(
GenerateRequest(
request=request,
response_queue=response_queue,
)
)
if req.streaming:
yield wav_chunk_header()
segments = []
while True:
result: WrappedGenerateResponse = response_queue.get()
if result.status == "error":
raise result.response
break
result: GenerateResponse = result.response
if result.action == "next":
break
with torch.autocast(
device_type=decoder_model.device.type, dtype=args.precision
):
fake_audios = decode_vq_tokens(
decoder_model=decoder_model,
codes=result.codes,
)
fake_audios = fake_audios.float().cpu().numpy()
if req.streaming:
yield (fake_audios * 32768).astype(np.int16).tobytes()
else:
segments.append(fake_audios)
if req.streaming:
return
if len(segments) == 0:
raise HTTPException(
HTTPStatus.INTERNAL_SERVER_ERROR,
content="No audio generated, please check the input text.",
)
fake_audios = np.concatenate(segments, axis=0)
yield fake_audios
def auto_rerank_inference(req: InvokeRequest, use_auto_rerank: bool = True):
if not use_auto_rerank:
# 如果不使用 auto_rerank,直接调用原始的 inference 函数
return inference(req)
zh_model, en_model = load_model()
max_attempts = 5
best_wer = float("inf")
best_audio = None
for attempt in range(max_attempts):
# 调用原始的 inference 函数
audio_generator = inference(req)
fake_audios = next(audio_generator)
asr_result = batch_asr(
zh_model if is_chinese(req.text) else en_model, [fake_audios], 44100
)[0]
wer = calculate_wer(req.text, asr_result["text"])
if wer <= 0.1 and not asr_result["huge_gap"]:
return fake_audios
if wer < best_wer:
best_wer = wer
best_audio = fake_audios
if attempt == max_attempts - 1:
break
return best_audio
async def inference_async(req: InvokeRequest):
for chunk in inference(req):
yield chunk
async def buffer_to_async_generator(buffer):
yield buffer
@routes.http.post("/v1/invoke")
async def api_invoke_model(
req: Annotated[InvokeRequest, Body(exclusive=True)],
):
"""
Invoke model and generate audio
"""
if args.max_text_length > 0 and len(req.text) > args.max_text_length:
raise HTTPException(
HTTPStatus.BAD_REQUEST,
content=f"Text is too long, max length is {args.max_text_length}",
)
if req.streaming and req.format != "wav":
raise HTTPException(
HTTPStatus.BAD_REQUEST,
content="Streaming only supports WAV format",
)
if req.streaming:
return StreamResponse(
iterable=inference_async(req),
headers={
"Content-Disposition": f"attachment; filename=audio.{req.format}",
},
content_type=get_content_type(req.format),
)
else:
fake_audios = next(inference(req))
buffer = io.BytesIO()
sf.write(
buffer,
fake_audios,
decoder_model.spec_transform.sample_rate,
format=req.format,
)
return StreamResponse(
iterable=buffer_to_async_generator(buffer.getvalue()),
headers={
"Content-Disposition": f"attachment; filename=audio.{req.format}",
},
content_type=get_content_type(req.format),
)
@routes.http.post("/v1/health")
async def api_health():
"""
Health check
"""
return JSONResponse({"status": "ok"})
def parse_args():
parser = ArgumentParser()
parser.add_argument(
"--llama-checkpoint-path",
type=str,
default="checkpoints/fish-speech-1.2-sft",
)
parser.add_argument(
"--decoder-checkpoint-path",
type=str,
default="checkpoints/fish-speech-1.2-sft/firefly-gan-vq-fsq-4x1024-42hz-generator.pth",
)
parser.add_argument("--decoder-config-name", type=str, default="firefly_gan_vq")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--half", action="store_true")
parser.add_argument("--compile", action="store_true")
parser.add_argument("--max-text-length", type=int, default=0)
parser.add_argument("--listen", type=str, default="127.0.0.1:8000")
parser.add_argument("--workers", type=int, default=1)
parser.add_argument("--use-auto-rerank", type=bool, default=True)
return parser.parse_args()
# Define Kui app
openapi = OpenAPI(
{
"title": "Fish Speech API",
},
).routes
app = Kui(
routes=routes + openapi[1:], # Remove the default route
exception_handlers={
HTTPException: http_execption_handler,
Exception: other_exception_handler,
},
cors_config={},
)
if __name__ == "__main__":
import threading
import uvicorn
args = parse_args()
args.precision = torch.half if args.half else torch.bfloat16
logger.info("Loading Llama model...")
llama_queue = launch_thread_safe_queue(
checkpoint_path=args.llama_checkpoint_path,
device=args.device,
precision=args.precision,
compile=args.compile,
)
logger.info("Llama model loaded, loading VQ-GAN model...")
decoder_model = load_decoder_model(
config_name=args.decoder_config_name,
checkpoint_path=args.decoder_checkpoint_path,
device=args.device,
)
logger.info("VQ-GAN model loaded, warming up...")
# Dry run to check if the model is loaded correctly and avoid the first-time latency
list(
inference(
InvokeRequest(
text="Hello world.",
reference_text=None,
reference_audio=None,
max_new_tokens=0,
top_p=0.7,
repetition_penalty=1.2,
temperature=0.7,
emotion=None,
format="wav",
ref_base=None,
ref_json=None,
)
)
)
logger.info(f"Warming up done, starting server at http://{args.listen}")
host, port = args.listen.split(":")
uvicorn.run(app, host=host, port=int(port), workers=args.workers, log_level="info")