Spaces:
Running
on
L4
Running
on
L4
import math | |
from functools import partial | |
from math import prod | |
from typing import Callable | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from torch.nn.utils.parametrizations import weight_norm | |
from torch.nn.utils.parametrize import remove_parametrizations | |
from torch.utils.checkpoint import checkpoint | |
def sequence_mask(length, max_length=None): | |
if max_length is None: | |
max_length = length.max() | |
x = torch.arange(max_length, dtype=length.dtype, device=length.device) | |
return x.unsqueeze(0) < length.unsqueeze(1) | |
def init_weights(m, mean=0.0, std=0.01): | |
classname = m.__class__.__name__ | |
if classname.find("Conv1D") != -1: | |
m.weight.data.normal_(mean, std) | |
def get_padding(kernel_size, dilation=1): | |
return (kernel_size * dilation - dilation) // 2 | |
def unpad1d(x: torch.Tensor, paddings: tuple[int, int]): | |
"""Remove padding from x, handling properly zero padding. Only for 1d!""" | |
padding_left, padding_right = paddings | |
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right) | |
assert (padding_left + padding_right) <= x.shape[-1] | |
end = x.shape[-1] - padding_right | |
return x[..., padding_left:end] | |
def get_extra_padding_for_conv1d( | |
x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0 | |
) -> int: | |
"""See `pad_for_conv1d`.""" | |
length = x.shape[-1] | |
n_frames = (length - kernel_size + padding_total) / stride + 1 | |
ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total) | |
return ideal_length - length | |
def pad1d( | |
x: torch.Tensor, | |
paddings: tuple[int, int], | |
mode: str = "zeros", | |
value: float = 0.0, | |
): | |
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input. | |
If this is the case, we insert extra 0 padding to the right | |
before the reflection happen. | |
""" | |
length = x.shape[-1] | |
padding_left, padding_right = paddings | |
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right) | |
if mode == "reflect": | |
max_pad = max(padding_left, padding_right) | |
extra_pad = 0 | |
if length <= max_pad: | |
extra_pad = max_pad - length + 1 | |
x = F.pad(x, (0, extra_pad)) | |
padded = F.pad(x, paddings, mode, value) | |
end = padded.shape[-1] - extra_pad | |
return padded[..., :end] | |
else: | |
return F.pad(x, paddings, mode, value) | |
class FishConvNet(nn.Module): | |
def __init__( | |
self, in_channels, out_channels, kernel_size, dilation=1, stride=1, groups=1 | |
): | |
super(FishConvNet, self).__init__() | |
self.conv = nn.Conv1d( | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=stride, | |
dilation=dilation, | |
groups=groups, | |
) | |
self.stride = stride | |
self.kernel_size = (kernel_size - 1) * dilation + 1 | |
self.dilation = dilation | |
def forward(self, x): | |
pad = self.kernel_size - self.stride | |
extra_padding = get_extra_padding_for_conv1d( | |
x, self.kernel_size, self.stride, pad | |
) | |
x = pad1d(x, (pad, extra_padding), mode="constant", value=0) | |
return self.conv(x).contiguous() | |
def weight_norm(self, name="weight", dim=0): | |
self.conv = weight_norm(self.conv, name=name, dim=dim) | |
return self | |
def remove_parametrizations(self, name="weight"): | |
self.conv = remove_parametrizations(self.conv, name) | |
return self | |
class FishTransConvNet(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, dilation=1, stride=1): | |
super(FishTransConvNet, self).__init__() | |
self.conv = nn.ConvTranspose1d( | |
in_channels, out_channels, kernel_size, stride=stride, dilation=dilation | |
) | |
self.stride = stride | |
self.kernel_size = kernel_size | |
def forward(self, x): | |
x = self.conv(x) | |
pad = self.kernel_size - self.stride | |
padding_right = math.ceil(pad) | |
padding_left = pad - padding_right | |
x = unpad1d(x, (padding_left, padding_right)) | |
return x.contiguous() | |
def weight_norm(self, name="weight", dim=0): | |
self.conv = weight_norm(self.conv, name=name, dim=dim) | |
return self | |
def remove_parametrizations(self, name="weight"): | |
self.conv = remove_parametrizations(self.conv, name) | |
return self | |
class ResBlock1(torch.nn.Module): | |
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): | |
super().__init__() | |
self.convs1 = nn.ModuleList( | |
[ | |
FishConvNet( | |
channels, channels, kernel_size, stride=1, dilation=dilation[0] | |
).weight_norm(), | |
FishConvNet( | |
channels, channels, kernel_size, stride=1, dilation=dilation[1] | |
).weight_norm(), | |
FishConvNet( | |
channels, channels, kernel_size, stride=1, dilation=dilation[2] | |
).weight_norm(), | |
] | |
) | |
self.convs1.apply(init_weights) | |
self.convs2 = nn.ModuleList( | |
[ | |
FishConvNet( | |
channels, channels, kernel_size, stride=1, dilation=dilation[0] | |
).weight_norm(), | |
FishConvNet( | |
channels, channels, kernel_size, stride=1, dilation=dilation[1] | |
).weight_norm(), | |
FishConvNet( | |
channels, channels, kernel_size, stride=1, dilation=dilation[2] | |
).weight_norm(), | |
] | |
) | |
self.convs2.apply(init_weights) | |
def forward(self, x): | |
for c1, c2 in zip(self.convs1, self.convs2): | |
xt = F.silu(x) | |
xt = c1(xt) | |
xt = F.silu(xt) | |
xt = c2(xt) | |
x = xt + x | |
return x | |
def remove_parametrizations(self): | |
for conv in self.convs1: | |
conv.remove_parametrizations() | |
for conv in self.convs2: | |
conv.remove_parametrizations() | |
class ParallelBlock(nn.Module): | |
def __init__( | |
self, | |
channels: int, | |
kernel_sizes: tuple[int] = (3, 7, 11), | |
dilation_sizes: tuple[tuple[int]] = ((1, 3, 5), (1, 3, 5), (1, 3, 5)), | |
): | |
super().__init__() | |
assert len(kernel_sizes) == len(dilation_sizes) | |
self.blocks = nn.ModuleList() | |
for k, d in zip(kernel_sizes, dilation_sizes): | |
self.blocks.append(ResBlock1(channels, k, d)) | |
def forward(self, x): | |
return torch.stack([block(x) for block in self.blocks], dim=0).mean(dim=0) | |
def remove_parametrizations(self): | |
for block in self.blocks: | |
block.remove_parametrizations() | |
class HiFiGANGenerator(nn.Module): | |
def __init__( | |
self, | |
*, | |
hop_length: int = 512, | |
upsample_rates: tuple[int] = (8, 8, 2, 2, 2), | |
upsample_kernel_sizes: tuple[int] = (16, 16, 8, 2, 2), | |
resblock_kernel_sizes: tuple[int] = (3, 7, 11), | |
resblock_dilation_sizes: tuple[tuple[int]] = ((1, 3, 5), (1, 3, 5), (1, 3, 5)), | |
num_mels: int = 128, | |
upsample_initial_channel: int = 512, | |
pre_conv_kernel_size: int = 7, | |
post_conv_kernel_size: int = 7, | |
post_activation: Callable = partial(nn.SiLU, inplace=True), | |
): | |
super().__init__() | |
assert ( | |
prod(upsample_rates) == hop_length | |
), f"hop_length must be {prod(upsample_rates)}" | |
self.conv_pre = FishConvNet( | |
num_mels, | |
upsample_initial_channel, | |
pre_conv_kernel_size, | |
stride=1, | |
).weight_norm() | |
self.num_upsamples = len(upsample_rates) | |
self.num_kernels = len(resblock_kernel_sizes) | |
self.noise_convs = nn.ModuleList() | |
self.ups = nn.ModuleList() | |
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | |
self.ups.append( | |
FishTransConvNet( | |
upsample_initial_channel // (2**i), | |
upsample_initial_channel // (2 ** (i + 1)), | |
k, | |
stride=u, | |
).weight_norm() | |
) | |
self.resblocks = nn.ModuleList() | |
for i in range(len(self.ups)): | |
ch = upsample_initial_channel // (2 ** (i + 1)) | |
self.resblocks.append( | |
ParallelBlock(ch, resblock_kernel_sizes, resblock_dilation_sizes) | |
) | |
self.activation_post = post_activation() | |
self.conv_post = FishConvNet( | |
ch, 1, post_conv_kernel_size, stride=1 | |
).weight_norm() | |
self.ups.apply(init_weights) | |
self.conv_post.apply(init_weights) | |
def forward(self, x): | |
x = self.conv_pre(x) | |
for i in range(self.num_upsamples): | |
x = F.silu(x, inplace=True) | |
x = self.ups[i](x) | |
if self.training and self.checkpointing: | |
x = checkpoint( | |
self.resblocks[i], | |
x, | |
use_reentrant=False, | |
) | |
else: | |
x = self.resblocks[i](x) | |
x = self.activation_post(x) | |
x = self.conv_post(x) | |
x = torch.tanh(x) | |
return x | |
def remove_parametrizations(self): | |
for up in self.ups: | |
up.remove_parametrizations() | |
for block in self.resblocks: | |
block.remove_parametrizations() | |
self.conv_pre.remove_parametrizations() | |
self.conv_post.remove_parametrizations() | |
# DropPath copied from timm library | |
def drop_path( | |
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True | |
): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, | |
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for | |
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use | |
'survival rate' as the argument. | |
""" # noqa: E501 | |
if drop_prob == 0.0 or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * ( | |
x.ndim - 1 | |
) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | |
if keep_prob > 0.0 and scale_by_keep: | |
random_tensor.div_(keep_prob) | |
return x * random_tensor | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" # noqa: E501 | |
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
self.scale_by_keep = scale_by_keep | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) | |
def extra_repr(self): | |
return f"drop_prob={round(self.drop_prob,3):0.3f}" | |
class LayerNorm(nn.Module): | |
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first. | |
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with | |
shape (batch_size, height, width, channels) while channels_first corresponds to inputs | |
with shape (batch_size, channels, height, width). | |
""" # noqa: E501 | |
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(normalized_shape)) | |
self.bias = nn.Parameter(torch.zeros(normalized_shape)) | |
self.eps = eps | |
self.data_format = data_format | |
if self.data_format not in ["channels_last", "channels_first"]: | |
raise NotImplementedError | |
self.normalized_shape = (normalized_shape,) | |
def forward(self, x): | |
if self.data_format == "channels_last": | |
return F.layer_norm( | |
x, self.normalized_shape, self.weight, self.bias, self.eps | |
) | |
elif self.data_format == "channels_first": | |
u = x.mean(1, keepdim=True) | |
s = (x - u).pow(2).mean(1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.eps) | |
x = self.weight[:, None] * x + self.bias[:, None] | |
return x | |
# ConvNeXt Block copied from https://github.com/fishaudio/fish-diffusion/blob/main/fish_diffusion/modules/convnext.py | |
class ConvNeXtBlock(nn.Module): | |
r"""ConvNeXt Block. There are two equivalent implementations: | |
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) | |
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back | |
We use (2) as we find it slightly faster in PyTorch | |
Args: | |
dim (int): Number of input channels. | |
drop_path (float): Stochastic depth rate. Default: 0.0 | |
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0. | |
kernel_size (int): Kernel size for depthwise conv. Default: 7. | |
dilation (int): Dilation for depthwise conv. Default: 1. | |
""" # noqa: E501 | |
def __init__( | |
self, | |
dim: int, | |
drop_path: float = 0.0, | |
layer_scale_init_value: float = 1e-6, | |
mlp_ratio: float = 4.0, | |
kernel_size: int = 7, | |
dilation: int = 1, | |
): | |
super().__init__() | |
self.dwconv = FishConvNet( | |
dim, | |
dim, | |
kernel_size=kernel_size, | |
# padding=int(dilation * (kernel_size - 1) / 2), | |
groups=dim, | |
) # depthwise conv | |
self.norm = LayerNorm(dim, eps=1e-6) | |
self.pwconv1 = nn.Linear( | |
dim, int(mlp_ratio * dim) | |
) # pointwise/1x1 convs, implemented with linear layers | |
self.act = nn.GELU() | |
self.pwconv2 = nn.Linear(int(mlp_ratio * dim), dim) | |
self.gamma = ( | |
nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) | |
if layer_scale_init_value > 0 | |
else None | |
) | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
def forward(self, x, apply_residual: bool = True): | |
input = x | |
x = self.dwconv(x) | |
x = x.permute(0, 2, 1) # (N, C, L) -> (N, L, C) | |
x = self.norm(x) | |
x = self.pwconv1(x) | |
x = self.act(x) | |
x = self.pwconv2(x) | |
if self.gamma is not None: | |
x = self.gamma * x | |
x = x.permute(0, 2, 1) # (N, L, C) -> (N, C, L) | |
x = self.drop_path(x) | |
if apply_residual: | |
x = input + x | |
return x | |
class ConvNeXtEncoder(nn.Module): | |
def __init__( | |
self, | |
input_channels: int = 3, | |
depths: list[int] = [3, 3, 9, 3], | |
dims: list[int] = [96, 192, 384, 768], | |
drop_path_rate: float = 0.0, | |
layer_scale_init_value: float = 1e-6, | |
kernel_size: int = 7, | |
): | |
super().__init__() | |
assert len(depths) == len(dims) | |
self.downsample_layers = nn.ModuleList() | |
stem = nn.Sequential( | |
FishConvNet( | |
input_channels, | |
dims[0], | |
kernel_size=7, | |
# padding=3, | |
# padding_mode="replicate", | |
# padding_mode="zeros", | |
), | |
LayerNorm(dims[0], eps=1e-6, data_format="channels_first"), | |
) | |
self.downsample_layers.append(stem) | |
for i in range(len(depths) - 1): | |
mid_layer = nn.Sequential( | |
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), | |
nn.Conv1d(dims[i], dims[i + 1], kernel_size=1), | |
) | |
self.downsample_layers.append(mid_layer) | |
self.stages = nn.ModuleList() | |
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] | |
cur = 0 | |
for i in range(len(depths)): | |
stage = nn.Sequential( | |
*[ | |
ConvNeXtBlock( | |
dim=dims[i], | |
drop_path=dp_rates[cur + j], | |
layer_scale_init_value=layer_scale_init_value, | |
kernel_size=kernel_size, | |
) | |
for j in range(depths[i]) | |
] | |
) | |
self.stages.append(stage) | |
cur += depths[i] | |
self.norm = LayerNorm(dims[-1], eps=1e-6, data_format="channels_first") | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, (nn.Conv1d, nn.Linear)): | |
nn.init.trunc_normal_(m.weight, std=0.02) | |
nn.init.constant_(m.bias, 0) | |
def forward( | |
self, | |
x: torch.Tensor, | |
) -> torch.Tensor: | |
for i in range(len(self.downsample_layers)): | |
x = self.downsample_layers[i](x) | |
x = self.stages[i](x) | |
return self.norm(x) | |
class FireflyArchitecture(nn.Module): | |
def __init__( | |
self, | |
backbone: nn.Module, | |
head: nn.Module, | |
quantizer: nn.Module, | |
spec_transform: nn.Module, | |
): | |
super().__init__() | |
self.backbone = backbone | |
self.head = head | |
self.quantizer = quantizer | |
self.spec_transform = spec_transform | |
self.downsample_factor = math.prod(self.quantizer.downsample_factor) | |
def forward(self, x: torch.Tensor, template=None, mask=None) -> torch.Tensor: | |
if self.spec_transform is not None: | |
x = self.spec_transform(x) | |
x = self.backbone(x) | |
if mask is not None: | |
x = x * mask | |
if self.quantizer is not None: | |
vq_result = self.quantizer(x) | |
x = vq_result.z | |
if mask is not None: | |
x = x * mask | |
x = self.head(x, template=template) | |
if x.ndim == 2: | |
x = x[:, None, :] | |
if self.vq is not None: | |
return x, vq_result | |
return x | |
def encode(self, audios, audio_lengths): | |
audios = audios.float() | |
mels = self.spec_transform(audios) | |
mel_lengths = audio_lengths // self.spec_transform.hop_length | |
mel_masks = sequence_mask(mel_lengths, mels.shape[2]) | |
mel_masks_float_conv = mel_masks[:, None, :].float() | |
mels = mels * mel_masks_float_conv | |
# Encode | |
encoded_features = self.backbone(mels) * mel_masks_float_conv | |
feature_lengths = mel_lengths // self.downsample_factor | |
return self.quantizer.encode(encoded_features), feature_lengths | |
def decode(self, indices, feature_lengths) -> torch.Tensor: | |
mel_masks = sequence_mask( | |
feature_lengths * self.downsample_factor, | |
indices.shape[2] * self.downsample_factor, | |
) | |
mel_masks_float_conv = mel_masks[:, None, :].float() | |
audio_lengths = ( | |
feature_lengths * self.downsample_factor * self.spec_transform.hop_length | |
) | |
audio_masks = sequence_mask( | |
audio_lengths, | |
indices.shape[2] * self.downsample_factor * self.spec_transform.hop_length, | |
) | |
audio_masks_float_conv = audio_masks[:, None, :].float() | |
z = self.quantizer.decode(indices) * mel_masks_float_conv | |
x = self.head(z) * audio_masks_float_conv | |
return x, audio_lengths | |
def remove_parametrizations(self): | |
if hasattr(self.backbone, "remove_parametrizations"): | |
self.backbone.remove_parametrizations() | |
if hasattr(self.head, "remove_parametrizations"): | |
self.head.remove_parametrizations() | |
def device(self): | |
return next(self.parameters()).device | |