Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Commit 
							
							·
						
						5150d64
	
1
								Parent(s):
							
							6134bec
								
mod chunk 10->15
Browse files- .gitignore +0 -0
- app.py +3 -3
    	
        .gitignore
    ADDED
    
    | 
            File without changes
         | 
    	
        app.py
    CHANGED
    
    | @@ -14,7 +14,7 @@ from parler_tts import ParlerTTSForConditionalGeneration | |
| 14 | 
             
            from pydub import AudioSegment
         | 
| 15 | 
             
            from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
         | 
| 16 |  | 
| 17 | 
            -
            device = "cuda | 
| 18 | 
             
            torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32
         | 
| 19 |  | 
| 20 | 
             
            repo_id = "ai4bharat/indic-parler-tts-pretrained"
         | 
| @@ -200,7 +200,7 @@ frame_rate = model.audio_encoder.config.frame_rate | |
| 200 | 
             
            def generate_base(text, description, play_steps_in_s=2.0):
         | 
| 201 | 
             
                # Initialize variables
         | 
| 202 | 
             
                play_steps = int(frame_rate * play_steps_in_s)
         | 
| 203 | 
            -
                chunk_size =  | 
| 204 |  | 
| 205 | 
             
                # Tokenize the full text and description
         | 
| 206 | 
             
                inputs = description_tokenizer(description, return_tensors="pt").to(device)
         | 
| @@ -272,7 +272,7 @@ def generate_base(text, description, play_steps_in_s=2.0): | |
| 272 | 
             
            def generate_jenny(text, description, play_steps_in_s=2.0):
         | 
| 273 | 
             
                # Initialize variables
         | 
| 274 | 
             
                play_steps = int(frame_rate * play_steps_in_s)
         | 
| 275 | 
            -
                chunk_size =  | 
| 276 |  | 
| 277 | 
             
                # Tokenize the full text and description
         | 
| 278 | 
             
                inputs = description_tokenizer(description, return_tensors="pt").to(device)
         | 
|  | |
| 14 | 
             
            from pydub import AudioSegment
         | 
| 15 | 
             
            from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
         | 
| 16 |  | 
| 17 | 
            +
            device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
         | 
| 18 | 
             
            torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32
         | 
| 19 |  | 
| 20 | 
             
            repo_id = "ai4bharat/indic-parler-tts-pretrained"
         | 
|  | |
| 200 | 
             
            def generate_base(text, description, play_steps_in_s=2.0):
         | 
| 201 | 
             
                # Initialize variables
         | 
| 202 | 
             
                play_steps = int(frame_rate * play_steps_in_s)
         | 
| 203 | 
            +
                chunk_size = 15  # Process 10 words at a time
         | 
| 204 |  | 
| 205 | 
             
                # Tokenize the full text and description
         | 
| 206 | 
             
                inputs = description_tokenizer(description, return_tensors="pt").to(device)
         | 
|  | |
| 272 | 
             
            def generate_jenny(text, description, play_steps_in_s=2.0):
         | 
| 273 | 
             
                # Initialize variables
         | 
| 274 | 
             
                play_steps = int(frame_rate * play_steps_in_s)
         | 
| 275 | 
            +
                chunk_size = 15  # Process 10 words at a time
         | 
| 276 |  | 
| 277 | 
             
                # Tokenize the full text and description
         | 
| 278 | 
             
                inputs = description_tokenizer(description, return_tensors="pt").to(device)
         |