Spaces:
Sleeping
Sleeping
Update app.py (#3)
Browse files- Update app.py (fe7399d2bb60ee8104736952121646297025506e)
- Update requirements.txt (f65e4a52d4d5d2173891b195bee96c3b4462dbdb)
Co-authored-by: Yoach Lacombe <ylacombe@users.noreply.huggingface.co>
- app.py +55 -84
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -9,22 +9,26 @@ import numpy as np
|
|
| 9 |
import spaces
|
| 10 |
import gradio as gr
|
| 11 |
import torch
|
|
|
|
|
|
|
| 12 |
|
| 13 |
from parler_tts import ParlerTTSForConditionalGeneration
|
| 14 |
from pydub import AudioSegment
|
| 15 |
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
|
| 16 |
|
| 17 |
-
|
|
|
|
|
|
|
| 18 |
torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32
|
| 19 |
|
| 20 |
repo_id = "ai4bharat/indic-parler-tts-pretrained"
|
| 21 |
-
|
| 22 |
|
| 23 |
model = ParlerTTSForConditionalGeneration.from_pretrained(
|
| 24 |
repo_id, attn_implementation="eager", torch_dtype=torch_dtype,
|
| 25 |
).to(device)
|
| 26 |
-
|
| 27 |
-
|
| 28 |
).to(device)
|
| 29 |
|
| 30 |
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
|
@@ -89,7 +93,7 @@ examples = [
|
|
| 89 |
]
|
| 90 |
|
| 91 |
|
| 92 |
-
|
| 93 |
[
|
| 94 |
"मुले बागेत खेळत आहेत आणि पक्षी किलबिलाट करत आहेत.",
|
| 95 |
"Sunita speaks slowly in a calm, moderate-pitched voice, delivering the news with a neutral tone. The recording is very high quality with no background noise.",
|
|
@@ -171,44 +175,30 @@ def numpy_to_mp3(audio_array, sampling_rate):
|
|
| 171 |
sampling_rate = model.audio_encoder.config.sampling_rate
|
| 172 |
frame_rate = model.audio_encoder.config.frame_rate
|
| 173 |
|
| 174 |
-
# @spaces.GPU
|
| 175 |
-
# def generate_base(text, description, play_steps_in_s=2.0):
|
| 176 |
-
# play_steps = int(frame_rate * play_steps_in_s)
|
| 177 |
-
# streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps)
|
| 178 |
-
|
| 179 |
-
# inputs = description_tokenizer(description, return_tensors="pt").to(device)
|
| 180 |
-
# prompt = tokenizer(text, return_tensors="pt").to(device)
|
| 181 |
-
|
| 182 |
-
# generation_kwargs = dict(
|
| 183 |
-
# input_ids=inputs.input_ids,
|
| 184 |
-
# prompt_input_ids=prompt.input_ids,
|
| 185 |
-
# streamer=streamer,
|
| 186 |
-
# do_sample=True,
|
| 187 |
-
# temperature=1.0,
|
| 188 |
-
# min_new_tokens=10,
|
| 189 |
-
# )
|
| 190 |
-
|
| 191 |
-
# set_seed(SEED)
|
| 192 |
-
# thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 193 |
-
# thread.start()
|
| 194 |
-
|
| 195 |
-
# for new_audio in streamer:
|
| 196 |
-
# print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
|
| 197 |
-
# yield numpy_to_mp3(new_audio, sampling_rate=sampling_rate)
|
| 198 |
-
|
| 199 |
@spaces.GPU
|
| 200 |
-
def generate_base(text, description,
|
| 201 |
# Initialize variables
|
| 202 |
-
|
| 203 |
-
chunk_size = 15 # Process 10 words at a time
|
| 204 |
|
| 205 |
# Tokenize the full text and description
|
| 206 |
inputs = description_tokenizer(description, return_tensors="pt").to(device)
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
chunks = [
|
| 211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
all_audio = []
|
| 213 |
|
| 214 |
# Process each chunk
|
|
@@ -223,8 +213,6 @@ def generate_base(text, description, play_steps_in_s=2.0):
|
|
| 223 |
prompt_input_ids=prompt.input_ids,
|
| 224 |
prompt_attention_mask=prompt.attention_mask,
|
| 225 |
do_sample=True,
|
| 226 |
-
# temperature=1.0,
|
| 227 |
-
# min_new_tokens=10,
|
| 228 |
return_dict_in_generate=True
|
| 229 |
)
|
| 230 |
|
|
@@ -243,43 +231,30 @@ def generate_base(text, description, play_steps_in_s=2.0):
|
|
| 243 |
print(f"Sample of length: {round(combined_audio.shape[0] / sampling_rate, 2)} seconds")
|
| 244 |
yield numpy_to_mp3(combined_audio, sampling_rate=sampling_rate)
|
| 245 |
|
| 246 |
-
# @spaces.GPU
|
| 247 |
-
# def generate_jenny(text, description, play_steps_in_s=2.0):
|
| 248 |
-
# play_steps = int(frame_rate * play_steps_in_s)
|
| 249 |
-
# streamer = ParlerTTSStreamer(jenny_model, device=device, play_steps=play_steps)
|
| 250 |
-
|
| 251 |
-
# inputs = description_tokenizer(description, return_tensors="pt").to(device)
|
| 252 |
-
# prompt = tokenizer(text, return_tensors="pt").to(device)
|
| 253 |
-
|
| 254 |
-
# generation_kwargs = dict(
|
| 255 |
-
# input_ids=inputs.input_ids,
|
| 256 |
-
# prompt_input_ids=prompt.input_ids,
|
| 257 |
-
# streamer=streamer,
|
| 258 |
-
# do_sample=True,
|
| 259 |
-
# temperature=1.0,
|
| 260 |
-
# min_new_tokens=10,
|
| 261 |
-
# )
|
| 262 |
-
|
| 263 |
-
# set_seed(SEED)
|
| 264 |
-
# thread = Thread(target=jenny_model.generate, kwargs=generation_kwargs)
|
| 265 |
-
# thread.start()
|
| 266 |
-
|
| 267 |
-
# for new_audio in streamer:
|
| 268 |
-
# print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
|
| 269 |
-
# yield sampling_rate, new_audio
|
| 270 |
|
| 271 |
@spaces.GPU
|
| 272 |
-
def
|
| 273 |
# Initialize variables
|
| 274 |
-
|
| 275 |
-
chunk_size = 15 # Process 10 words at a time
|
| 276 |
|
| 277 |
# Tokenize the full text and description
|
| 278 |
inputs = description_tokenizer(description, return_tensors="pt").to(device)
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
chunks = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
|
| 284 |
all_audio = []
|
| 285 |
|
|
@@ -289,14 +264,12 @@ def generate_jenny(text, description, play_steps_in_s=2.0):
|
|
| 289 |
prompt = tokenizer(chunk, return_tensors="pt").to(device)
|
| 290 |
|
| 291 |
# Generate audio for the chunk
|
| 292 |
-
generation =
|
| 293 |
input_ids=inputs.input_ids,
|
| 294 |
attention_mask=inputs.attention_mask,
|
| 295 |
prompt_input_ids=prompt.input_ids,
|
| 296 |
prompt_attention_mask=prompt.attention_mask,
|
| 297 |
do_sample=True,
|
| 298 |
-
# temperature=1.0,
|
| 299 |
-
# min_new_tokens=10,
|
| 300 |
return_dict_in_generate=True
|
| 301 |
)
|
| 302 |
|
|
@@ -387,29 +360,27 @@ with gr.Blocks(css=css) as block:
|
|
| 387 |
with gr.Tab("Finetuned"):
|
| 388 |
with gr.Row():
|
| 389 |
with gr.Column():
|
| 390 |
-
input_text = gr.Textbox(label="Input Text", lines=2, value=
|
| 391 |
-
description = gr.Textbox(label="Description", lines=2, value=
|
| 392 |
-
play_seconds = gr.Slider(3.0, 7.0, value=jenny_examples[0][2], step=2, label="Streaming interval in seconds", info="Lower = shorter chunks, lower latency, more codec steps")
|
| 393 |
run_button = gr.Button("Generate Audio", variant="primary")
|
| 394 |
with gr.Column():
|
| 395 |
-
audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out",
|
| 396 |
|
| 397 |
-
inputs = [input_text, description
|
| 398 |
outputs = [audio_out]
|
| 399 |
-
gr.Examples(examples=
|
| 400 |
-
run_button.click(fn=
|
| 401 |
|
| 402 |
with gr.Tab("Pretrained"):
|
| 403 |
with gr.Row():
|
| 404 |
with gr.Column():
|
| 405 |
input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text")
|
| 406 |
description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description")
|
| 407 |
-
play_seconds = gr.Slider(3.0, 7.0, value=3.0, step=2, label="Streaming interval in seconds", info="Lower = shorter chunks, lower latency, more codec steps")
|
| 408 |
run_button = gr.Button("Generate Audio", variant="primary")
|
| 409 |
with gr.Column():
|
| 410 |
-
audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out",
|
| 411 |
|
| 412 |
-
inputs = [input_text, description
|
| 413 |
outputs = [audio_out]
|
| 414 |
gr.Examples(examples=examples, fn=generate_base, inputs=inputs, outputs=outputs, cache_examples=False)
|
| 415 |
run_button.click(fn=generate_base, inputs=inputs, outputs=outputs, queue=True)
|
|
|
|
| 9 |
import spaces
|
| 10 |
import gradio as gr
|
| 11 |
import torch
|
| 12 |
+
import nltk
|
| 13 |
+
|
| 14 |
|
| 15 |
from parler_tts import ParlerTTSForConditionalGeneration
|
| 16 |
from pydub import AudioSegment
|
| 17 |
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
|
| 18 |
|
| 19 |
+
nltk.download('punkt_tab')
|
| 20 |
+
|
| 21 |
+
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
| 22 |
torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32
|
| 23 |
|
| 24 |
repo_id = "ai4bharat/indic-parler-tts-pretrained"
|
| 25 |
+
finetuned_repo_id = "ai4bharat/indic-parler-tts"
|
| 26 |
|
| 27 |
model = ParlerTTSForConditionalGeneration.from_pretrained(
|
| 28 |
repo_id, attn_implementation="eager", torch_dtype=torch_dtype,
|
| 29 |
).to(device)
|
| 30 |
+
finetuned_model = ParlerTTSForConditionalGeneration.from_pretrained(
|
| 31 |
+
finetuned_repo_id, attn_implementation="eager", torch_dtype=torch_dtype,
|
| 32 |
).to(device)
|
| 33 |
|
| 34 |
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
|
|
|
| 93 |
]
|
| 94 |
|
| 95 |
|
| 96 |
+
finetuned_examples = [
|
| 97 |
[
|
| 98 |
"मुले बागेत खेळत आहेत आणि पक्षी किलबिलाट करत आहेत.",
|
| 99 |
"Sunita speaks slowly in a calm, moderate-pitched voice, delivering the news with a neutral tone. The recording is very high quality with no background noise.",
|
|
|
|
| 175 |
sampling_rate = model.audio_encoder.config.sampling_rate
|
| 176 |
frame_rate = model.audio_encoder.config.frame_rate
|
| 177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
@spaces.GPU
|
| 179 |
+
def generate_base(text, description,):
|
| 180 |
# Initialize variables
|
| 181 |
+
chunk_size = 25 # Process max 25 words or a sentence at a time
|
|
|
|
| 182 |
|
| 183 |
# Tokenize the full text and description
|
| 184 |
inputs = description_tokenizer(description, return_tensors="pt").to(device)
|
| 185 |
+
|
| 186 |
+
sentences_text = nltk.sent_tokenize(text) # this gives us a list of sentences
|
| 187 |
+
curr_sentence = ""
|
| 188 |
+
chunks = []
|
| 189 |
+
for sentence in sentences_text:
|
| 190 |
+
candidate = " ".join([curr_sentence, sentence])
|
| 191 |
+
if len(candidate.split()) >= chunk_size:
|
| 192 |
+
chunks.append(curr_sentence)
|
| 193 |
+
curr_sentence = sentence
|
| 194 |
+
else:
|
| 195 |
+
curr_sentence = candidate
|
| 196 |
+
|
| 197 |
+
if curr_sentence != "":
|
| 198 |
+
chunks.append(curr_sentence)
|
| 199 |
+
|
| 200 |
+
print(chunks)
|
| 201 |
+
|
| 202 |
all_audio = []
|
| 203 |
|
| 204 |
# Process each chunk
|
|
|
|
| 213 |
prompt_input_ids=prompt.input_ids,
|
| 214 |
prompt_attention_mask=prompt.attention_mask,
|
| 215 |
do_sample=True,
|
|
|
|
|
|
|
| 216 |
return_dict_in_generate=True
|
| 217 |
)
|
| 218 |
|
|
|
|
| 231 |
print(f"Sample of length: {round(combined_audio.shape[0] / sampling_rate, 2)} seconds")
|
| 232 |
yield numpy_to_mp3(combined_audio, sampling_rate=sampling_rate)
|
| 233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
@spaces.GPU
|
| 236 |
+
def generate_finetuned(text, description):
|
| 237 |
# Initialize variables
|
| 238 |
+
chunk_size = 25 # Process max 25 words or a sentence at a time
|
|
|
|
| 239 |
|
| 240 |
# Tokenize the full text and description
|
| 241 |
inputs = description_tokenizer(description, return_tensors="pt").to(device)
|
| 242 |
+
|
| 243 |
+
sentences_text = nltk.sent_tokenize(text) # this gives us a list of sentences
|
| 244 |
+
curr_sentence = ""
|
| 245 |
+
chunks = []
|
| 246 |
+
for sentence in sentences_text:
|
| 247 |
+
candidate = " ".join([curr_sentence, sentence])
|
| 248 |
+
if len(candidate.split()) >= chunk_size:
|
| 249 |
+
chunks.append(curr_sentence)
|
| 250 |
+
curr_sentence = sentence
|
| 251 |
+
else:
|
| 252 |
+
curr_sentence = candidate
|
| 253 |
+
|
| 254 |
+
if curr_sentence != "":
|
| 255 |
+
chunks.append(curr_sentence)
|
| 256 |
+
|
| 257 |
+
print(chunks)
|
| 258 |
|
| 259 |
all_audio = []
|
| 260 |
|
|
|
|
| 264 |
prompt = tokenizer(chunk, return_tensors="pt").to(device)
|
| 265 |
|
| 266 |
# Generate audio for the chunk
|
| 267 |
+
generation = finetuned_model.generate(
|
| 268 |
input_ids=inputs.input_ids,
|
| 269 |
attention_mask=inputs.attention_mask,
|
| 270 |
prompt_input_ids=prompt.input_ids,
|
| 271 |
prompt_attention_mask=prompt.attention_mask,
|
| 272 |
do_sample=True,
|
|
|
|
|
|
|
| 273 |
return_dict_in_generate=True
|
| 274 |
)
|
| 275 |
|
|
|
|
| 360 |
with gr.Tab("Finetuned"):
|
| 361 |
with gr.Row():
|
| 362 |
with gr.Column():
|
| 363 |
+
input_text = gr.Textbox(label="Input Text", lines=2, value=finetuned_examples[0][0], elem_id="input_text")
|
| 364 |
+
description = gr.Textbox(label="Description", lines=2, value=finetuned_examples[0][1], elem_id="input_description")
|
|
|
|
| 365 |
run_button = gr.Button("Generate Audio", variant="primary")
|
| 366 |
with gr.Column():
|
| 367 |
+
audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", autoplay=True)
|
| 368 |
|
| 369 |
+
inputs = [input_text, description]
|
| 370 |
outputs = [audio_out]
|
| 371 |
+
gr.Examples(examples=finetuned_examples, fn=generate_finetuned, inputs=inputs, outputs=outputs, cache_examples=False)
|
| 372 |
+
run_button.click(fn=generate_finetuned, inputs=inputs, outputs=outputs, queue=True)
|
| 373 |
|
| 374 |
with gr.Tab("Pretrained"):
|
| 375 |
with gr.Row():
|
| 376 |
with gr.Column():
|
| 377 |
input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text")
|
| 378 |
description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description")
|
|
|
|
| 379 |
run_button = gr.Button("Generate Audio", variant="primary")
|
| 380 |
with gr.Column():
|
| 381 |
+
audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", autoplay=True)
|
| 382 |
|
| 383 |
+
inputs = [input_text, description]
|
| 384 |
outputs = [audio_out]
|
| 385 |
gr.Examples(examples=examples, fn=generate_base, inputs=inputs, outputs=outputs, cache_examples=False)
|
| 386 |
run_button.click(fn=generate_base, inputs=inputs, outputs=outputs, queue=True)
|
requirements.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
torch
|
| 2 |
spaces
|
| 3 |
git+https://github.com/huggingface/parler-tts.git
|
| 4 |
-
|
|
|
|
| 1 |
torch
|
| 2 |
spaces
|
| 3 |
git+https://github.com/huggingface/parler-tts.git
|
| 4 |
+
nltk
|