Akito-UzukiP commited on
Commit
77d2471
1 Parent(s): 9429d2d

add models

Browse files
.gitignore CHANGED
@@ -161,7 +161,6 @@ cython_debug/
161
 
162
  .DS_Store
163
  /models
164
- /logs
165
 
166
  filelists/*
167
  !/filelists/esd.list
 
161
 
162
  .DS_Store
163
  /models
 
164
 
165
  filelists/*
166
  !/filelists/esd.list
logs/umamusume/DUR_138000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:895126bae99723209956cfd0cae65c33899e6a3f61f93ce3346818876f1dbe69
3
+ size 6885803
logs/umamusume/D_138000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:468ec1276c5524d9ea67149eb7c3867212d01976a56373a03668c97b8f6fab67
3
+ size 561070759
logs/umamusume/G_138000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93a7f35fa578f375c48cc5a72166c9a54cb972b69778c35cb601c814990394b3
3
+ size 857607936
logs/umamusume/config.json ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 20,
4
+ "eval_interval": 500,
5
+ "seed": 52,
6
+ "epochs": 10000,
7
+ "learning_rate": 1e-04,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 4,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 16384,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "skip_optimizer": true
22
+ },
23
+ "data": {
24
+ "training_files": "filelists/train.list",
25
+ "validation_files": "filelists/val.list",
26
+ "max_wav_value": 32768.0,
27
+ "sampling_rate": 44100,
28
+ "filter_length": 2048,
29
+ "hop_length": 512,
30
+ "win_length": 2048,
31
+ "n_mel_channels": 128,
32
+ "mel_fmin": 0.0,
33
+ "mel_fmax": null,
34
+ "add_blank": true,
35
+ "n_speakers": 256,
36
+ "cleaned_text": true,
37
+ "spk2id": {
38
+ "特别周": 0,
39
+ "无声铃鹿": 1,
40
+ "丸善斯基": 2,
41
+ "富士奇迹": 3,
42
+ "东海帝皇": 4,
43
+ "小栗帽": 5,
44
+ "黄金船": 6,
45
+ "伏特加": 7,
46
+ "大和赤骥": 8,
47
+ "菱亚马逊": 9,
48
+ "草上飞": 10,
49
+ "大树快车": 11,
50
+ "目白麦昆": 12,
51
+ "神鹰": 13,
52
+ "鲁道夫象征": 14,
53
+ "好歌剧": 15,
54
+ "成田白仁": 16,
55
+ "爱丽数码": 17,
56
+ "美妙姿势": 18,
57
+ "摩耶重炮": 19,
58
+ "玉藻十字": 20,
59
+ "琵琶晨光": 21,
60
+ "目白赖恩": 22,
61
+ "美浦波旁": 23,
62
+ "雪中美人": 24,
63
+ "米浴": 25,
64
+ "爱丽速子": 26,
65
+ "爱慕织姬": 27,
66
+ "曼城茶座": 28,
67
+ "气槽": 29,
68
+ "星云天空": 30,
69
+ "菱曙": 31,
70
+ "艾尼斯风神": 32,
71
+ "稻荷一": 33,
72
+ "空中神宫": 34,
73
+ "川上公主": 35,
74
+ "黄金城": 36,
75
+ "真机伶": 37,
76
+ "荣进闪耀": 38,
77
+ "采珠": 39,
78
+ "新光风": 40,
79
+ "超级小海湾": 41,
80
+ "荒漠英雄": 42,
81
+ "东瀛佐敦": 43,
82
+ "中山庆典": 44,
83
+ "成田大进": 45,
84
+ "西野花": 46,
85
+ "醒目飞鹰": 47,
86
+ "春乌拉拉": 48,
87
+ "青竹回忆": 49,
88
+ "待兼福来": 50,
89
+ "Mr CB": 51,
90
+ "美丽周日": 52,
91
+ "名将怒涛": 53,
92
+ "帝王光辉": 54,
93
+ "待兼诗歌剧": 55,
94
+ "生野狄杜斯": 56,
95
+ "优秀素质": 57,
96
+ "双涡轮": 58,
97
+ "目白多伯": 59,
98
+ "目白善信": 60,
99
+ "大拓太阳神": 61,
100
+ "北部玄驹": 62,
101
+ "目白阿尔丹": 63,
102
+ "八重无敌": 64,
103
+ "里见光钻": 65,
104
+ "天狼星象征": 66,
105
+ "樱花桂冠": 67,
106
+ "成田路": 68,
107
+ "也文摄辉": 69,
108
+ "吉兆": 70,
109
+ "鹤丸刚志": 71,
110
+ "谷野美酒": 72,
111
+ "第一红宝石": 73,
112
+ "目白高峰": 74,
113
+ "真弓快车": 75,
114
+ "里见皇冠": 76,
115
+ "高尚骏逸": 77,
116
+ "凯斯奇迹": 78,
117
+ "森林宝穴": 79,
118
+ "小林力奇": 80,
119
+ "奇瑞骏": 81,
120
+ "葛城王牌": 82,
121
+ "新宇宙": 83,
122
+ "菱钻奇宝": 84,
123
+ "望族": 85,
124
+ "骏川手纲": 86,
125
+ "秋川弥生": 87,
126
+ "乙名史悦子": 88,
127
+ "桐生院葵": 89,
128
+ "安心泽刺刺美": 90,
129
+ "达利阿拉伯": 91,
130
+ "高多芬柏布": 92,
131
+ "佐岳五月": 93,
132
+ "胜利奖券": 94,
133
+ "樱花进王": 95,
134
+ "东商变革": 96,
135
+ "微光飞驹": 97,
136
+ "樱花千代王": 98,
137
+ "跳舞城": 99,
138
+ "樫本理子": 100,
139
+ "明亮圣辉": 101,
140
+ "拜耶土耳其": 102
141
+ }
142
+ },
143
+ "model": {
144
+ "use_spk_conditioned_encoder": true,
145
+ "use_noise_scaled_mas": true,
146
+ "use_mel_posterior_encoder": false,
147
+ "use_duration_discriminator": true,
148
+ "inter_channels": 192,
149
+ "hidden_channels": 192,
150
+ "filter_channels": 768,
151
+ "n_heads": 2,
152
+ "n_layers": 6,
153
+ "kernel_size": 3,
154
+ "p_dropout": 0.1,
155
+ "resblock": "1",
156
+ "resblock_kernel_sizes": [
157
+ 3,
158
+ 7,
159
+ 11
160
+ ],
161
+ "resblock_dilation_sizes": [
162
+ [
163
+ 1,
164
+ 3,
165
+ 5
166
+ ],
167
+ [
168
+ 1,
169
+ 3,
170
+ 5
171
+ ],
172
+ [
173
+ 1,
174
+ 3,
175
+ 5
176
+ ]
177
+ ],
178
+ "upsample_rates": [
179
+ 8,
180
+ 8,
181
+ 2,
182
+ 2,
183
+ 2
184
+ ],
185
+ "upsample_initial_channel": 512,
186
+ "upsample_kernel_sizes": [
187
+ 16,
188
+ 16,
189
+ 8,
190
+ 2,
191
+ 2
192
+ ],
193
+ "n_layers_q": 3,
194
+ "use_spectral_norm": false,
195
+ "gin_channels": 256
196
+ }
197
+ }
logs/umamusume/githash ADDED
@@ -0,0 +1 @@
 
 
1
+ f046571ad63592c0b424e40a429e34182ca41357
text/chinese_bert.py CHANGED
@@ -2,7 +2,7 @@ import torch
2
  import sys
3
  from transformers import AutoTokenizer, AutoModelForMaskedLM
4
 
5
- tokenizer = AutoTokenizer.from_pretrained("./bert/chinese-roberta-wwm-ext-large")
6
 
7
  models = dict()
8
 
@@ -18,7 +18,7 @@ def get_bert_feature(text, word2ph, device=None):
18
  device = "cuda"
19
  if device not in models.keys():
20
  models[device] = AutoModelForMaskedLM.from_pretrained(
21
- "./bert/chinese-roberta-wwm-ext-large"
22
  ).to(device)
23
  with torch.no_grad():
24
  inputs = tokenizer(text, return_tensors="pt")
 
2
  import sys
3
  from transformers import AutoTokenizer, AutoModelForMaskedLM
4
 
5
+ tokenizer = AutoTokenizer.from_pretrained("hfl/chinese-roberta-wwm-ext-large")
6
 
7
  models = dict()
8
 
 
18
  device = "cuda"
19
  if device not in models.keys():
20
  models[device] = AutoModelForMaskedLM.from_pretrained(
21
+ "hfl/chinese-roberta-wwm-ext-large"
22
  ).to(device)
23
  with torch.no_grad():
24
  inputs = tokenizer(text, return_tensors="pt")
text/japanese.py CHANGED
@@ -569,7 +569,7 @@ def distribute_phone(n_phone, n_word):
569
  return phones_per_word
570
 
571
  import os
572
- tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
573
 
574
  def g2p(norm_text):
575
  sep_text, sep_kata = text2sep_kata(norm_text)
@@ -656,7 +656,7 @@ def g2p_nobert(norm_text):
656
 
657
  import os
658
  if __name__ == "__main__":
659
- tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
660
  #tokenizer = AutoTokenizer.from_pretrained("bert/bert-base-japanese-v3")
661
  text = "これが先頭の景色……観覧車みたいです。童、小童!"
662
  from text.japanese_bert import get_bert_feature
 
569
  return phones_per_word
570
 
571
  import os
572
+ tokenizer = AutoTokenizer.from_pretrained("cl-tohoku/bert-base-japanese-v3")
573
 
574
  def g2p(norm_text):
575
  sep_text, sep_kata = text2sep_kata(norm_text)
 
656
 
657
  import os
658
  if __name__ == "__main__":
659
+ tokenizer = AutoTokenizer.from_pretrained("cl-tohoku/bert-base-japanese-v3")
660
  #tokenizer = AutoTokenizer.from_pretrained("bert/bert-base-japanese-v3")
661
  text = "これが先頭の景色……観覧車みたいです。童、小童!"
662
  from text.japanese_bert import get_bert_feature
text/japanese_bert.py CHANGED
@@ -3,7 +3,7 @@ from transformers import AutoTokenizer, AutoModelForMaskedLM
3
  import sys
4
  import os
5
  from text.japanese import text2sep_kata
6
- tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
7
 
8
  models = dict()
9
 
@@ -57,7 +57,7 @@ def get_bert_feature_with_token(tokens, word2ph, device=None):
57
  device = "cuda"
58
  if device not in models.keys():
59
  models[device] = AutoModelForMaskedLM.from_pretrained(
60
- "./bert/bert-base-japanese-v3"
61
  ).to(device)
62
  with torch.no_grad():
63
  inputs = torch.tensor(tokens).to(device).unsqueeze(0)
 
3
  import sys
4
  import os
5
  from text.japanese import text2sep_kata
6
+ tokenizer = AutoTokenizer.from_pretrained("cl-tohoku/bert-base-japanese-v3")
7
 
8
  models = dict()
9
 
 
57
  device = "cuda"
58
  if device not in models.keys():
59
  models[device] = AutoModelForMaskedLM.from_pretrained(
60
+ "cl-tohoku/bert-base-japanese-v3"
61
  ).to(device)
62
  with torch.no_grad():
63
  inputs = torch.tensor(tokens).to(device).unsqueeze(0)