Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoTokenizer, AutoModelForMaskedLM | |
import sys | |
import os | |
from text.japanese import text2sep_kata | |
tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3") | |
models = dict() | |
def get_bert_feature(text, word2ph, device=None): | |
sep_text,_ = text2sep_kata(text) | |
sep_tokens = [tokenizer.tokenize(t) for t in sep_text] | |
sep_ids = [tokenizer.convert_tokens_to_ids(t) for t in sep_tokens] | |
sep_ids = [2]+[item for sublist in sep_ids for item in sublist]+[3] | |
return get_bert_feature_with_token(sep_ids, word2ph, device) | |
# def get_bert_feature(text, word2ph, device=None): | |
# if ( | |
# sys.platform == "darwin" | |
# and torch.backends.mps.is_available() | |
# and device == "cpu" | |
# ): | |
# device = "mps" | |
# if not device: | |
# device = "cuda" | |
# if device not in models.keys(): | |
# models[device] = AutoModelForMaskedLM.from_pretrained( | |
# "cl-tohoku/bert-base-japanese-v3" | |
# ).to(device) | |
# with torch.no_grad(): | |
# inputs = tokenizer(text, return_tensors="pt") | |
# for i in inputs: | |
# inputs[i] = inputs[i].to(device) | |
# res = models[device](**inputs, output_hidden_states=True) | |
# res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu() | |
# assert inputs["input_ids"].shape[-1] == len(word2ph) | |
# word2phone = word2ph | |
# phone_level_feature = [] | |
# for i in range(len(word2phone)): | |
# repeat_feature = res[i].repeat(word2phone[i], 1) | |
# phone_level_feature.append(repeat_feature) | |
# phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
# return phone_level_feature.T | |
def get_bert_feature_with_token(tokens, word2ph, device=None): | |
if ( | |
sys.platform == "darwin" | |
and torch.backends.mps.is_available() | |
and device == "cpu" | |
): | |
device = "mps" | |
if not device: | |
device = "cuda" | |
if device not in models.keys(): | |
models[device] = AutoModelForMaskedLM.from_pretrained( | |
"./bert/bert-base-japanese-v3" | |
).to(device) | |
with torch.no_grad(): | |
inputs = torch.tensor(tokens).to(device).unsqueeze(0) | |
token_type_ids = torch.zeros_like(inputs).to(device) | |
attention_mask = torch.ones_like(inputs).to(device) | |
inputs = {"input_ids": inputs, "token_type_ids": token_type_ids, "attention_mask": attention_mask} | |
# for i in inputs: | |
# inputs[i] = inputs[i].to(device) | |
res = models[device](**inputs, output_hidden_states=True) | |
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu() | |
assert inputs["input_ids"].shape[-1] == len(word2ph) | |
word2phone = word2ph | |
phone_level_feature = [] | |
for i in range(len(word2phone)): | |
repeat_feature = res[i].repeat(word2phone[i], 1) | |
phone_level_feature.append(repeat_feature) | |
phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
return phone_level_feature.T | |
if __name__ == "__main__": | |
print(get_bert_feature("観覧車",[4,2])) | |
pass |