EKNA_V1 / src /ov_inference.py
fireedman's picture
Primer commit, creo que faltan los modelos pesados
d4757ae
from glob import glob
from enum import Enum
import math
import subprocess
import cv2
import numpy as np
from tqdm import tqdm
import torch
import torch.nn.functional as F
from Wav2Lip import audio
import openvino as ov
device = "cpu"
def bboxlog(x1, y1, x2, y2, axc, ayc, aww, ahh):
xc, yc, ww, hh = (x2 + x1) / 2, (y2 + y1) / 2, x2 - x1, y2 - y1
dx, dy = (xc - axc) / aww, (yc - ayc) / ahh
dw, dh = math.log(ww / aww), math.log(hh / ahh)
return dx, dy, dw, dh
def bboxloginv(dx, dy, dw, dh, axc, ayc, aww, ahh):
xc, yc = dx * aww + axc, dy * ahh + ayc
ww, hh = math.exp(dw) * aww, math.exp(dh) * ahh
x1, x2, y1, y2 = xc - ww / 2, xc + ww / 2, yc - hh / 2, yc + hh / 2
return x1, y1, x2, y2
def nms(dets, thresh):
if 0 == len(dets):
return []
x1, y1, x2, y2, scores = dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3], dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1, yy1 = np.maximum(x1[i], x1[order[1:]]), np.maximum(y1[i], y1[order[1:]])
xx2, yy2 = np.minimum(x2[i], x2[order[1:]]), np.minimum(y2[i], y2[order[1:]])
w, h = np.maximum(0.0, xx2 - xx1 + 1), np.maximum(0.0, yy2 - yy1 + 1)
ovr = w * h / (areas[i] + areas[order[1:]] - w * h)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def encode(matched, priors, variances):
"""Encode the variances from the priorbox layers into the ground truth boxes
we have matched (based on jaccard overlap) with the prior boxes.
Args:
matched: (tensor) Coords of ground truth for each prior in point-form
Shape: [num_priors, 4].
priors: (tensor) Prior boxes in center-offset form
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
encoded boxes (tensor), Shape: [num_priors, 4]
"""
# dist b/t match center and prior's center
g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2]
# encode variance
g_cxcy /= variances[0] * priors[:, 2:]
# match wh / prior wh
g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
g_wh = torch.log(g_wh) / variances[1]
# return target for smooth_l1_loss
return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4]
def decode(loc, priors, variances):
"""Decode locations from predictions using priors to undo
the encoding we did for offset regression at train time.
Args:
loc (tensor): location predictions for loc layers,
Shape: [num_priors,4]
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
decoded bounding box predictions
"""
boxes = torch.cat((priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:], priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
boxes[:, :2] -= boxes[:, 2:] / 2
boxes[:, 2:] += boxes[:, :2]
return boxes
def batch_decode(loc, priors, variances):
"""Decode locations from predictions using priors to undo
the encoding we did for offset regression at train time.
Args:
loc (tensor): location predictions for loc layers,
Shape: [num_priors,4]
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
decoded bounding box predictions
"""
boxes = torch.cat((priors[:, :, :2] + loc[:, :, :2] * variances[0] * priors[:, :, 2:], priors[:, :, 2:] * torch.exp(loc[:, :, 2:] * variances[1])), 2)
boxes[:, :, :2] -= boxes[:, :, 2:] / 2
boxes[:, :, 2:] += boxes[:, :, :2]
return boxes
def get_smoothened_boxes(boxes, T):
for i in range(len(boxes)):
if i + T > len(boxes):
window = boxes[len(boxes) - T :]
else:
window = boxes[i : i + T]
boxes[i] = np.mean(window, axis=0)
return boxes
def detect(net, img, device):
img = img - np.array([104, 117, 123])
img = img.transpose(2, 0, 1)
img = img.reshape((1,) + img.shape)
img = torch.from_numpy(img).float().to(device)
BB, CC, HH, WW = img.size()
results = net({"x": img})
olist = [torch.Tensor(results[i]) for i in range(12)]
bboxlist = []
for i in range(len(olist) // 2):
olist[i * 2] = F.softmax(olist[i * 2], dim=1)
olist = [oelem.data.cpu() for oelem in olist]
for i in range(len(olist) // 2):
ocls, oreg = olist[i * 2], olist[i * 2 + 1]
FB, FC, FH, FW = ocls.size() # feature map size
stride = 2 ** (i + 2) # 4,8,16,32,64,128
anchor = stride * 4
poss = zip(*np.where(ocls[:, 1, :, :] > 0.05))
for Iindex, hindex, windex in poss:
axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride
score = ocls[0, 1, hindex, windex]
loc = oreg[0, :, hindex, windex].contiguous().view(1, 4)
priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]])
variances = [0.1, 0.2]
box = decode(loc, priors, variances)
x1, y1, x2, y2 = box[0] * 1.0
# cv2.rectangle(imgshow,(int(x1),int(y1)),(int(x2),int(y2)),(0,0,255),1)
bboxlist.append([x1, y1, x2, y2, score])
bboxlist = np.array(bboxlist)
if 0 == len(bboxlist):
bboxlist = np.zeros((1, 5))
return bboxlist
def batch_detect(net, imgs, device):
imgs = imgs - np.array([104, 117, 123])
imgs = imgs.transpose(0, 3, 1, 2)
imgs = torch.from_numpy(imgs).float().to(device)
BB, CC, HH, WW = imgs.size()
results = net({"x": imgs.numpy()})
olist = [torch.Tensor(results[i]) for i in range(12)]
bboxlist = []
for i in range(len(olist) // 2):
olist[i * 2] = F.softmax(olist[i * 2], dim=1)
# olist[i * 2] = (olist[i * 2], dim=1)
olist = [oelem.data.cpu() for oelem in olist]
for i in range(len(olist) // 2):
ocls, oreg = olist[i * 2], olist[i * 2 + 1]
FB, FC, FH, FW = ocls.size() # feature map size
stride = 2 ** (i + 2) # 4,8,16,32,64,128
anchor = stride * 4
poss = zip(*np.where(ocls[:, 1, :, :] > 0.05))
for Iindex, hindex, windex in poss:
axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride
score = ocls[:, 1, hindex, windex]
loc = oreg[:, :, hindex, windex].contiguous().view(BB, 1, 4)
priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]]).view(1, 1, 4)
variances = [0.1, 0.2]
box = batch_decode(loc, priors, variances)
box = box[:, 0] * 1.0
# cv2.rectangle(imgshow,(int(x1),int(y1)),(int(x2),int(y2)),(0,0,255),1)
bboxlist.append(torch.cat([box, score.unsqueeze(1)], 1).cpu().numpy())
bboxlist = np.array(bboxlist)
if 0 == len(bboxlist):
bboxlist = np.zeros((1, BB, 5))
return bboxlist
def flip_detect(net, img, device):
img = cv2.flip(img, 1)
b = detect(net, img, device)
bboxlist = np.zeros(b.shape)
bboxlist[:, 0] = img.shape[1] - b[:, 2]
bboxlist[:, 1] = b[:, 1]
bboxlist[:, 2] = img.shape[1] - b[:, 0]
bboxlist[:, 3] = b[:, 3]
bboxlist[:, 4] = b[:, 4]
return bboxlist
def pts_to_bb(pts):
min_x, min_y = np.min(pts, axis=0)
max_x, max_y = np.max(pts, axis=0)
return np.array([min_x, min_y, max_x, max_y])
class OVFaceDetector(object):
"""An abstract class representing a face detector.
Any other face detection implementation must subclass it. All subclasses
must implement ``detect_from_image``, that return a list of detected
bounding boxes. Optionally, for speed considerations detect from path is
recommended.
"""
def __init__(self, device, verbose):
self.device = device
self.verbose = verbose
def detect_from_image(self, tensor_or_path):
"""Detects faces in a given image.
This function detects the faces present in a provided BGR(usually)
image. The input can be either the image itself or the path to it.
Arguments:
tensor_or_path {numpy.ndarray, torch.tensor or string} -- the path
to an image or the image itself.
Example::
>>> path_to_image = 'data/image_01.jpg'
... detected_faces = detect_from_image(path_to_image)
[A list of bounding boxes (x1, y1, x2, y2)]
>>> image = cv2.imread(path_to_image)
... detected_faces = detect_from_image(image)
[A list of bounding boxes (x1, y1, x2, y2)]
"""
raise NotImplementedError
def detect_from_directory(self, path, extensions=[".jpg", ".png"], recursive=False, show_progress_bar=True):
"""Detects faces from all the images present in a given directory.
Arguments:
path {string} -- a string containing a path that points to the folder containing the images
Keyword Arguments:
extensions {list} -- list of string containing the extensions to be
consider in the following format: ``.extension_name`` (default:
{['.jpg', '.png']}) recursive {bool} -- option wherever to scan the
folder recursively (default: {False}) show_progress_bar {bool} --
display a progressbar (default: {True})
Example:
>>> directory = 'data'
... detected_faces = detect_from_directory(directory)
{A dictionary of [lists containing bounding boxes(x1, y1, x2, y2)]}
"""
if self.verbose:
logger = logging.getLogger(__name__)
if len(extensions) == 0:
if self.verbose:
logger.error("Expected at list one extension, but none was received.")
raise ValueError
if self.verbose:
logger.info("Constructing the list of images.")
additional_pattern = "/**/*" if recursive else "/*"
files = []
for extension in extensions:
files.extend(glob.glob(path + additional_pattern + extension, recursive=recursive))
if self.verbose:
logger.info("Finished searching for images. %s images found", len(files))
logger.info("Preparing to run the detection.")
predictions = {}
for image_path in tqdm(files, disable=not show_progress_bar):
if self.verbose:
logger.info("Running the face detector on image: %s", image_path)
predictions[image_path] = self.detect_from_image(image_path)
if self.verbose:
logger.info("The detector was successfully run on all %s images", len(files))
return predictions
@property
def reference_scale(self):
raise NotImplementedError
@property
def reference_x_shift(self):
raise NotImplementedError
@property
def reference_y_shift(self):
raise NotImplementedError
@staticmethod
def tensor_or_path_to_ndarray(tensor_or_path, rgb=True):
"""Convert path (represented as a string) or torch.tensor to a numpy.ndarray
Arguments:
tensor_or_path {numpy.ndarray, torch.tensor or string} -- path to the image, or the image itself
"""
if isinstance(tensor_or_path, str):
return cv2.imread(tensor_or_path) if not rgb else cv2.imread(tensor_or_path)[..., ::-1]
elif torch.is_tensor(tensor_or_path):
# Call cpu in case its coming from cuda
return tensor_or_path.cpu().numpy()[..., ::-1].copy() if not rgb else tensor_or_path.cpu().numpy()
elif isinstance(tensor_or_path, np.ndarray):
return tensor_or_path[..., ::-1].copy() if not rgb else tensor_or_path
else:
raise TypeError
class OVSFDDetector(OVFaceDetector):
def __init__(self, device, path_to_detector="models/face_detection.xml", verbose=False):
super(OVSFDDetector, self).__init__(device, verbose)
core = ov.Core()
self.face_detector = core.compile_model(path_to_detector, self.device)
def detect_from_image(self, tensor_or_path):
image = self.tensor_or_path_to_ndarray(tensor_or_path)
bboxlist = detect(self.face_detector, image, device="cpu")
keep = nms(bboxlist, 0.3)
bboxlist = bboxlist[keep, :]
bboxlist = [x for x in bboxlist if x[-1] > 0.5]
return bboxlist
def detect_from_batch(self, images):
bboxlists = batch_detect(self.face_detector, images, device="cpu")
keeps = [nms(bboxlists[:, i, :], 0.3) for i in range(bboxlists.shape[1])]
bboxlists = [bboxlists[keep, i, :] for i, keep in enumerate(keeps)]
bboxlists = [[x for x in bboxlist if x[-1] > 0.5] for bboxlist in bboxlists]
return bboxlists
@property
def reference_scale(self):
return 195
@property
def reference_x_shift(self):
return 0
@property
def reference_y_shift(self):
return 0
class LandmarksType(Enum):
"""Enum class defining the type of landmarks to detect.
``_2D`` - the detected points ``(x,y)`` are detected in a 2D space and follow the visible contour of the face
``_2halfD`` - this points represent the projection of the 3D points into 3D
``_3D`` - detect the points ``(x,y,z)``` in a 3D space
"""
_2D = 1
_2halfD = 2
_3D = 3
class NetworkSize(Enum):
# TINY = 1
# SMALL = 2
# MEDIUM = 3
LARGE = 4
def __new__(cls, value):
member = object.__new__(cls)
member._value_ = value
return member
def __int__(self):
return self.value
class OVFaceAlignment:
def __init__(
self, landmarks_type, network_size=NetworkSize.LARGE, device="CPU", flip_input=False, verbose=False, path_to_detector="models/face_detection.xml"
):
self.device = device
self.flip_input = flip_input
self.landmarks_type = landmarks_type
self.verbose = verbose
network_size = int(network_size)
self.face_detector = OVSFDDetector(device=device, path_to_detector=path_to_detector, verbose=verbose)
def get_detections_for_batch(self, images):
images = images[..., ::-1]
detected_faces = self.face_detector.detect_from_batch(images.copy())
results = []
for i, d in enumerate(detected_faces):
if len(d) == 0:
results.append(None)
continue
d = d[0]
d = np.clip(d, 0, None)
x1, y1, x2, y2 = map(int, d[:-1])
results.append((x1, y1, x2, y2))
return results
def face_detect_ov(images, device, face_det_batch_size, pads, nosmooth, path_to_detector):
detector = OVFaceAlignment(LandmarksType._2D, flip_input=False, device=device, path_to_detector=path_to_detector)
batch_size = face_det_batch_size
print("face_detect_ov images[0].shape: ", images[0].shape)
while 1:
predictions = []
try:
for i in tqdm(range(0, len(images), batch_size)):
predictions.extend(detector.get_detections_for_batch(np.array(images[i : i + batch_size])))
except RuntimeError:
if batch_size == 1:
raise RuntimeError("Image too big to run face detection on GPU. Please use the --resize_factor argument")
batch_size //= 2
print("Recovering from OOM error; New batch size: {}".format(batch_size))
continue
break
results = []
pady1, pady2, padx1, padx2 = pads
for rect, image in zip(predictions, images):
if rect is None:
# check this frame where the face was not detected.
cv2.imwrite("temp/faulty_frame.jpg", image)
raise ValueError("Face not detected! Ensure the video contains a face in all the frames.")
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
boxes = np.array(results)
if not nosmooth:
boxes = get_smoothened_boxes(boxes, T=5)
results = [[image[y1:y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
del detector
return results
def datagen(frames, mels, box, static, face_det_batch_size, pads, nosmooth, img_size, wav2lip_batch_size, path_to_detector):
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if box[0] == -1:
if not static:
# BGR2RGB for CNN face detection
face_det_results = face_detect_ov(frames, "CPU", face_det_batch_size, pads, nosmooth, path_to_detector)
else:
face_det_results = face_detect_ov([frames[0]], "CPU", face_det_batch_size, pads, nosmooth, path_to_detector)
else:
print("Using the specified bounding box instead of face detection...")
y1, y2, x1, x2 = box
face_det_results = [[f[y1:y2, x1:x2], (y1, y2, x1, x2)] for f in frames]
for i, m in enumerate(mels):
idx = 0 if static else i % len(frames)
frame_to_save = frames[idx].copy()
face, coords = face_det_results[idx].copy()
face = cv2.resize(face, (img_size, img_size))
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coords_batch.append(coords)
if len(img_batch) >= wav2lip_batch_size:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, img_size // 2 :] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.0
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if len(img_batch) > 0:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, img_size // 2 :] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.0
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
def ov_inference(
face_path,
audio_path,
face_detection_path="models/face_detection.xml",
wav2lip_path="models/wav2lip.xml",
inference_device="CPU",
wav2lip_batch_size=128,
outfile="results/result_voice.mp4",
resize_factor=1,
rotate=False,
crop=[0, -1, 0, -1],
mel_step_size=16,
box=[-1, -1, -1, -1],
static=False,
img_size=96,
face_det_batch_size=16,
pads=[0, 10, 0, 0],
nosmooth=False,
):
print("Reading video frames...")
video_stream = cv2.VideoCapture(face_path)
fps = video_stream.get(cv2.CAP_PROP_FPS)
full_frames = []
while 1:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
if resize_factor > 1:
frame = cv2.resize(frame, (frame.shape[1] // resize_factor, frame.shape[0] // resize_factor))
if rotate:
frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE)
y1, y2, x1, x2 = crop
if x2 == -1:
x2 = frame.shape[1]
if y2 == -1:
y2 = frame.shape[0]
frame = frame[y1:y2, x1:x2]
full_frames.append(frame)
print("Number of frames available for inference: " + str(len(full_frames)))
core = ov.Core()
if not audio_path.endswith(".wav"):
print("Extracting raw audio...")
command = "ffmpeg -y -i {} -strict -2 {}".format(audio_path, "temp/temp.wav")
subprocess.call(command, shell=True)
audio_path = "temp/temp.wav"
wav = audio.load_wav(audio_path, 16000)
mel = audio.melspectrogram(wav)
print(mel.shape)
if np.isnan(mel.reshape(-1)).sum() > 0:
raise ValueError("Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again")
mel_chunks = []
mel_idx_multiplier = 80.0 / fps
i = 0
while 1:
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size > len(mel[0]):
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size :])
break
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
i += 1
print("Length of mel chunks: {}".format(len(mel_chunks)))
full_frames = full_frames[: len(mel_chunks)]
batch_size = wav2lip_batch_size
gen = datagen(full_frames.copy(), mel_chunks, box, static, face_det_batch_size, pads, nosmooth, img_size, wav2lip_batch_size, face_detection_path)
for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen, total=int(np.ceil(float(len(mel_chunks)) / batch_size)))):
if i == 0:
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
compiled_wav2lip_model = core.compile_model(wav2lip_path, inference_device)
print("Model loaded")
frame_h, frame_w = full_frames[0].shape[:-1]
out = cv2.VideoWriter("C:/programacionEjercicios/miwav2lipv6/src/Wav2Lip/temp/result.avi", cv2.VideoWriter_fourcc(*"DIVX"), fps, (frame_w, frame_h))
pred_ov = compiled_wav2lip_model({"audio_sequences": mel_batch.numpy(), "face_sequences": img_batch.numpy()})[0]
else:
img_batch = np.transpose(img_batch, (0, 3, 1, 2))
mel_batch = np.transpose(mel_batch, (0, 3, 1, 2))
pred_ov = compiled_wav2lip_model({"audio_sequences": mel_batch, "face_sequences": img_batch})[0]
pred_ov = compiled_wav2lip_model({"audio_sequences": mel_batch, "face_sequences": img_batch})[0]
pred_ov = pred_ov.transpose(0, 2, 3, 1) * 255.0
for p, f, c in zip(pred_ov, frames, coords):
y1, y2, x1, x2 = c
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
f[y1:y2, x1:x2] = p
out.write(f)
out.release()
command = "ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}".format(audio_path, "C:/programacionEjercicios/miwav2lipv6/src/Wav2Lip/temp/result.avi", outfile)
subprocess.call(command, shell=True)
return outfile