|
from glob import glob |
|
from enum import Enum |
|
import math |
|
import subprocess |
|
|
|
import cv2 |
|
import numpy as np |
|
from tqdm import tqdm |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from Wav2Lip import audio |
|
import openvino as ov |
|
|
|
|
|
device = "cpu" |
|
|
|
|
|
def bboxlog(x1, y1, x2, y2, axc, ayc, aww, ahh): |
|
xc, yc, ww, hh = (x2 + x1) / 2, (y2 + y1) / 2, x2 - x1, y2 - y1 |
|
dx, dy = (xc - axc) / aww, (yc - ayc) / ahh |
|
dw, dh = math.log(ww / aww), math.log(hh / ahh) |
|
return dx, dy, dw, dh |
|
|
|
|
|
def bboxloginv(dx, dy, dw, dh, axc, ayc, aww, ahh): |
|
xc, yc = dx * aww + axc, dy * ahh + ayc |
|
ww, hh = math.exp(dw) * aww, math.exp(dh) * ahh |
|
x1, x2, y1, y2 = xc - ww / 2, xc + ww / 2, yc - hh / 2, yc + hh / 2 |
|
return x1, y1, x2, y2 |
|
|
|
|
|
def nms(dets, thresh): |
|
if 0 == len(dets): |
|
return [] |
|
x1, y1, x2, y2, scores = dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3], dets[:, 4] |
|
areas = (x2 - x1 + 1) * (y2 - y1 + 1) |
|
order = scores.argsort()[::-1] |
|
|
|
keep = [] |
|
while order.size > 0: |
|
i = order[0] |
|
keep.append(i) |
|
xx1, yy1 = np.maximum(x1[i], x1[order[1:]]), np.maximum(y1[i], y1[order[1:]]) |
|
xx2, yy2 = np.minimum(x2[i], x2[order[1:]]), np.minimum(y2[i], y2[order[1:]]) |
|
|
|
w, h = np.maximum(0.0, xx2 - xx1 + 1), np.maximum(0.0, yy2 - yy1 + 1) |
|
ovr = w * h / (areas[i] + areas[order[1:]] - w * h) |
|
|
|
inds = np.where(ovr <= thresh)[0] |
|
order = order[inds + 1] |
|
|
|
return keep |
|
|
|
|
|
def encode(matched, priors, variances): |
|
"""Encode the variances from the priorbox layers into the ground truth boxes |
|
we have matched (based on jaccard overlap) with the prior boxes. |
|
Args: |
|
matched: (tensor) Coords of ground truth for each prior in point-form |
|
Shape: [num_priors, 4]. |
|
priors: (tensor) Prior boxes in center-offset form |
|
Shape: [num_priors,4]. |
|
variances: (list[float]) Variances of priorboxes |
|
Return: |
|
encoded boxes (tensor), Shape: [num_priors, 4] |
|
""" |
|
|
|
|
|
g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2] |
|
|
|
g_cxcy /= variances[0] * priors[:, 2:] |
|
|
|
g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:] |
|
g_wh = torch.log(g_wh) / variances[1] |
|
|
|
return torch.cat([g_cxcy, g_wh], 1) |
|
|
|
|
|
def decode(loc, priors, variances): |
|
"""Decode locations from predictions using priors to undo |
|
the encoding we did for offset regression at train time. |
|
Args: |
|
loc (tensor): location predictions for loc layers, |
|
Shape: [num_priors,4] |
|
priors (tensor): Prior boxes in center-offset form. |
|
Shape: [num_priors,4]. |
|
variances: (list[float]) Variances of priorboxes |
|
Return: |
|
decoded bounding box predictions |
|
""" |
|
|
|
boxes = torch.cat((priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:], priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1) |
|
boxes[:, :2] -= boxes[:, 2:] / 2 |
|
boxes[:, 2:] += boxes[:, :2] |
|
return boxes |
|
|
|
|
|
def batch_decode(loc, priors, variances): |
|
"""Decode locations from predictions using priors to undo |
|
the encoding we did for offset regression at train time. |
|
Args: |
|
loc (tensor): location predictions for loc layers, |
|
Shape: [num_priors,4] |
|
priors (tensor): Prior boxes in center-offset form. |
|
Shape: [num_priors,4]. |
|
variances: (list[float]) Variances of priorboxes |
|
Return: |
|
decoded bounding box predictions |
|
""" |
|
|
|
boxes = torch.cat((priors[:, :, :2] + loc[:, :, :2] * variances[0] * priors[:, :, 2:], priors[:, :, 2:] * torch.exp(loc[:, :, 2:] * variances[1])), 2) |
|
boxes[:, :, :2] -= boxes[:, :, 2:] / 2 |
|
boxes[:, :, 2:] += boxes[:, :, :2] |
|
return boxes |
|
|
|
|
|
def get_smoothened_boxes(boxes, T): |
|
for i in range(len(boxes)): |
|
if i + T > len(boxes): |
|
window = boxes[len(boxes) - T :] |
|
else: |
|
window = boxes[i : i + T] |
|
boxes[i] = np.mean(window, axis=0) |
|
return boxes |
|
|
|
|
|
def detect(net, img, device): |
|
img = img - np.array([104, 117, 123]) |
|
img = img.transpose(2, 0, 1) |
|
img = img.reshape((1,) + img.shape) |
|
|
|
img = torch.from_numpy(img).float().to(device) |
|
BB, CC, HH, WW = img.size() |
|
|
|
results = net({"x": img}) |
|
olist = [torch.Tensor(results[i]) for i in range(12)] |
|
|
|
bboxlist = [] |
|
for i in range(len(olist) // 2): |
|
olist[i * 2] = F.softmax(olist[i * 2], dim=1) |
|
olist = [oelem.data.cpu() for oelem in olist] |
|
for i in range(len(olist) // 2): |
|
ocls, oreg = olist[i * 2], olist[i * 2 + 1] |
|
FB, FC, FH, FW = ocls.size() |
|
stride = 2 ** (i + 2) |
|
anchor = stride * 4 |
|
poss = zip(*np.where(ocls[:, 1, :, :] > 0.05)) |
|
for Iindex, hindex, windex in poss: |
|
axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride |
|
score = ocls[0, 1, hindex, windex] |
|
loc = oreg[0, :, hindex, windex].contiguous().view(1, 4) |
|
priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]]) |
|
variances = [0.1, 0.2] |
|
box = decode(loc, priors, variances) |
|
x1, y1, x2, y2 = box[0] * 1.0 |
|
|
|
bboxlist.append([x1, y1, x2, y2, score]) |
|
bboxlist = np.array(bboxlist) |
|
if 0 == len(bboxlist): |
|
bboxlist = np.zeros((1, 5)) |
|
|
|
return bboxlist |
|
|
|
|
|
def batch_detect(net, imgs, device): |
|
imgs = imgs - np.array([104, 117, 123]) |
|
imgs = imgs.transpose(0, 3, 1, 2) |
|
|
|
imgs = torch.from_numpy(imgs).float().to(device) |
|
BB, CC, HH, WW = imgs.size() |
|
|
|
results = net({"x": imgs.numpy()}) |
|
olist = [torch.Tensor(results[i]) for i in range(12)] |
|
|
|
bboxlist = [] |
|
for i in range(len(olist) // 2): |
|
olist[i * 2] = F.softmax(olist[i * 2], dim=1) |
|
|
|
olist = [oelem.data.cpu() for oelem in olist] |
|
for i in range(len(olist) // 2): |
|
ocls, oreg = olist[i * 2], olist[i * 2 + 1] |
|
FB, FC, FH, FW = ocls.size() |
|
stride = 2 ** (i + 2) |
|
anchor = stride * 4 |
|
poss = zip(*np.where(ocls[:, 1, :, :] > 0.05)) |
|
for Iindex, hindex, windex in poss: |
|
axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride |
|
score = ocls[:, 1, hindex, windex] |
|
loc = oreg[:, :, hindex, windex].contiguous().view(BB, 1, 4) |
|
priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]]).view(1, 1, 4) |
|
variances = [0.1, 0.2] |
|
box = batch_decode(loc, priors, variances) |
|
box = box[:, 0] * 1.0 |
|
|
|
bboxlist.append(torch.cat([box, score.unsqueeze(1)], 1).cpu().numpy()) |
|
bboxlist = np.array(bboxlist) |
|
if 0 == len(bboxlist): |
|
bboxlist = np.zeros((1, BB, 5)) |
|
|
|
return bboxlist |
|
|
|
|
|
def flip_detect(net, img, device): |
|
img = cv2.flip(img, 1) |
|
b = detect(net, img, device) |
|
|
|
bboxlist = np.zeros(b.shape) |
|
bboxlist[:, 0] = img.shape[1] - b[:, 2] |
|
bboxlist[:, 1] = b[:, 1] |
|
bboxlist[:, 2] = img.shape[1] - b[:, 0] |
|
bboxlist[:, 3] = b[:, 3] |
|
bboxlist[:, 4] = b[:, 4] |
|
return bboxlist |
|
|
|
|
|
def pts_to_bb(pts): |
|
min_x, min_y = np.min(pts, axis=0) |
|
max_x, max_y = np.max(pts, axis=0) |
|
return np.array([min_x, min_y, max_x, max_y]) |
|
|
|
|
|
class OVFaceDetector(object): |
|
"""An abstract class representing a face detector. |
|
|
|
Any other face detection implementation must subclass it. All subclasses |
|
must implement ``detect_from_image``, that return a list of detected |
|
bounding boxes. Optionally, for speed considerations detect from path is |
|
recommended. |
|
""" |
|
|
|
def __init__(self, device, verbose): |
|
self.device = device |
|
self.verbose = verbose |
|
|
|
def detect_from_image(self, tensor_or_path): |
|
"""Detects faces in a given image. |
|
|
|
This function detects the faces present in a provided BGR(usually) |
|
image. The input can be either the image itself or the path to it. |
|
|
|
Arguments: |
|
tensor_or_path {numpy.ndarray, torch.tensor or string} -- the path |
|
to an image or the image itself. |
|
|
|
Example:: |
|
|
|
>>> path_to_image = 'data/image_01.jpg' |
|
... detected_faces = detect_from_image(path_to_image) |
|
[A list of bounding boxes (x1, y1, x2, y2)] |
|
>>> image = cv2.imread(path_to_image) |
|
... detected_faces = detect_from_image(image) |
|
[A list of bounding boxes (x1, y1, x2, y2)] |
|
|
|
""" |
|
raise NotImplementedError |
|
|
|
def detect_from_directory(self, path, extensions=[".jpg", ".png"], recursive=False, show_progress_bar=True): |
|
"""Detects faces from all the images present in a given directory. |
|
|
|
Arguments: |
|
path {string} -- a string containing a path that points to the folder containing the images |
|
|
|
Keyword Arguments: |
|
extensions {list} -- list of string containing the extensions to be |
|
consider in the following format: ``.extension_name`` (default: |
|
{['.jpg', '.png']}) recursive {bool} -- option wherever to scan the |
|
folder recursively (default: {False}) show_progress_bar {bool} -- |
|
display a progressbar (default: {True}) |
|
|
|
Example: |
|
>>> directory = 'data' |
|
... detected_faces = detect_from_directory(directory) |
|
{A dictionary of [lists containing bounding boxes(x1, y1, x2, y2)]} |
|
|
|
""" |
|
if self.verbose: |
|
logger = logging.getLogger(__name__) |
|
|
|
if len(extensions) == 0: |
|
if self.verbose: |
|
logger.error("Expected at list one extension, but none was received.") |
|
raise ValueError |
|
|
|
if self.verbose: |
|
logger.info("Constructing the list of images.") |
|
additional_pattern = "/**/*" if recursive else "/*" |
|
files = [] |
|
for extension in extensions: |
|
files.extend(glob.glob(path + additional_pattern + extension, recursive=recursive)) |
|
|
|
if self.verbose: |
|
logger.info("Finished searching for images. %s images found", len(files)) |
|
logger.info("Preparing to run the detection.") |
|
|
|
predictions = {} |
|
for image_path in tqdm(files, disable=not show_progress_bar): |
|
if self.verbose: |
|
logger.info("Running the face detector on image: %s", image_path) |
|
predictions[image_path] = self.detect_from_image(image_path) |
|
|
|
if self.verbose: |
|
logger.info("The detector was successfully run on all %s images", len(files)) |
|
|
|
return predictions |
|
|
|
@property |
|
def reference_scale(self): |
|
raise NotImplementedError |
|
|
|
@property |
|
def reference_x_shift(self): |
|
raise NotImplementedError |
|
|
|
@property |
|
def reference_y_shift(self): |
|
raise NotImplementedError |
|
|
|
@staticmethod |
|
def tensor_or_path_to_ndarray(tensor_or_path, rgb=True): |
|
"""Convert path (represented as a string) or torch.tensor to a numpy.ndarray |
|
|
|
Arguments: |
|
tensor_or_path {numpy.ndarray, torch.tensor or string} -- path to the image, or the image itself |
|
""" |
|
if isinstance(tensor_or_path, str): |
|
return cv2.imread(tensor_or_path) if not rgb else cv2.imread(tensor_or_path)[..., ::-1] |
|
elif torch.is_tensor(tensor_or_path): |
|
|
|
return tensor_or_path.cpu().numpy()[..., ::-1].copy() if not rgb else tensor_or_path.cpu().numpy() |
|
elif isinstance(tensor_or_path, np.ndarray): |
|
return tensor_or_path[..., ::-1].copy() if not rgb else tensor_or_path |
|
else: |
|
raise TypeError |
|
|
|
|
|
class OVSFDDetector(OVFaceDetector): |
|
def __init__(self, device, path_to_detector="models/face_detection.xml", verbose=False): |
|
super(OVSFDDetector, self).__init__(device, verbose) |
|
|
|
core = ov.Core() |
|
self.face_detector = core.compile_model(path_to_detector, self.device) |
|
|
|
def detect_from_image(self, tensor_or_path): |
|
image = self.tensor_or_path_to_ndarray(tensor_or_path) |
|
|
|
bboxlist = detect(self.face_detector, image, device="cpu") |
|
keep = nms(bboxlist, 0.3) |
|
bboxlist = bboxlist[keep, :] |
|
bboxlist = [x for x in bboxlist if x[-1] > 0.5] |
|
|
|
return bboxlist |
|
|
|
def detect_from_batch(self, images): |
|
bboxlists = batch_detect(self.face_detector, images, device="cpu") |
|
keeps = [nms(bboxlists[:, i, :], 0.3) for i in range(bboxlists.shape[1])] |
|
bboxlists = [bboxlists[keep, i, :] for i, keep in enumerate(keeps)] |
|
bboxlists = [[x for x in bboxlist if x[-1] > 0.5] for bboxlist in bboxlists] |
|
|
|
return bboxlists |
|
|
|
@property |
|
def reference_scale(self): |
|
return 195 |
|
|
|
@property |
|
def reference_x_shift(self): |
|
return 0 |
|
|
|
@property |
|
def reference_y_shift(self): |
|
return 0 |
|
|
|
|
|
class LandmarksType(Enum): |
|
"""Enum class defining the type of landmarks to detect. |
|
|
|
``_2D`` - the detected points ``(x,y)`` are detected in a 2D space and follow the visible contour of the face |
|
``_2halfD`` - this points represent the projection of the 3D points into 3D |
|
``_3D`` - detect the points ``(x,y,z)``` in a 3D space |
|
|
|
""" |
|
|
|
_2D = 1 |
|
_2halfD = 2 |
|
_3D = 3 |
|
|
|
|
|
class NetworkSize(Enum): |
|
|
|
|
|
|
|
LARGE = 4 |
|
|
|
def __new__(cls, value): |
|
member = object.__new__(cls) |
|
member._value_ = value |
|
return member |
|
|
|
def __int__(self): |
|
return self.value |
|
|
|
|
|
class OVFaceAlignment: |
|
def __init__( |
|
self, landmarks_type, network_size=NetworkSize.LARGE, device="CPU", flip_input=False, verbose=False, path_to_detector="models/face_detection.xml" |
|
): |
|
self.device = device |
|
self.flip_input = flip_input |
|
self.landmarks_type = landmarks_type |
|
self.verbose = verbose |
|
|
|
network_size = int(network_size) |
|
|
|
self.face_detector = OVSFDDetector(device=device, path_to_detector=path_to_detector, verbose=verbose) |
|
|
|
def get_detections_for_batch(self, images): |
|
images = images[..., ::-1] |
|
detected_faces = self.face_detector.detect_from_batch(images.copy()) |
|
results = [] |
|
|
|
for i, d in enumerate(detected_faces): |
|
if len(d) == 0: |
|
results.append(None) |
|
continue |
|
d = d[0] |
|
d = np.clip(d, 0, None) |
|
|
|
x1, y1, x2, y2 = map(int, d[:-1]) |
|
results.append((x1, y1, x2, y2)) |
|
|
|
return results |
|
|
|
|
|
def face_detect_ov(images, device, face_det_batch_size, pads, nosmooth, path_to_detector): |
|
detector = OVFaceAlignment(LandmarksType._2D, flip_input=False, device=device, path_to_detector=path_to_detector) |
|
|
|
batch_size = face_det_batch_size |
|
|
|
print("face_detect_ov images[0].shape: ", images[0].shape) |
|
while 1: |
|
predictions = [] |
|
try: |
|
for i in tqdm(range(0, len(images), batch_size)): |
|
predictions.extend(detector.get_detections_for_batch(np.array(images[i : i + batch_size]))) |
|
except RuntimeError: |
|
if batch_size == 1: |
|
raise RuntimeError("Image too big to run face detection on GPU. Please use the --resize_factor argument") |
|
batch_size //= 2 |
|
print("Recovering from OOM error; New batch size: {}".format(batch_size)) |
|
continue |
|
break |
|
|
|
results = [] |
|
pady1, pady2, padx1, padx2 = pads |
|
for rect, image in zip(predictions, images): |
|
if rect is None: |
|
|
|
cv2.imwrite("temp/faulty_frame.jpg", image) |
|
raise ValueError("Face not detected! Ensure the video contains a face in all the frames.") |
|
|
|
y1 = max(0, rect[1] - pady1) |
|
y2 = min(image.shape[0], rect[3] + pady2) |
|
x1 = max(0, rect[0] - padx1) |
|
x2 = min(image.shape[1], rect[2] + padx2) |
|
|
|
results.append([x1, y1, x2, y2]) |
|
|
|
boxes = np.array(results) |
|
if not nosmooth: |
|
boxes = get_smoothened_boxes(boxes, T=5) |
|
results = [[image[y1:y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)] |
|
|
|
del detector |
|
return results |
|
|
|
|
|
def datagen(frames, mels, box, static, face_det_batch_size, pads, nosmooth, img_size, wav2lip_batch_size, path_to_detector): |
|
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], [] |
|
|
|
if box[0] == -1: |
|
if not static: |
|
|
|
face_det_results = face_detect_ov(frames, "CPU", face_det_batch_size, pads, nosmooth, path_to_detector) |
|
else: |
|
face_det_results = face_detect_ov([frames[0]], "CPU", face_det_batch_size, pads, nosmooth, path_to_detector) |
|
else: |
|
print("Using the specified bounding box instead of face detection...") |
|
y1, y2, x1, x2 = box |
|
face_det_results = [[f[y1:y2, x1:x2], (y1, y2, x1, x2)] for f in frames] |
|
|
|
for i, m in enumerate(mels): |
|
idx = 0 if static else i % len(frames) |
|
frame_to_save = frames[idx].copy() |
|
face, coords = face_det_results[idx].copy() |
|
|
|
face = cv2.resize(face, (img_size, img_size)) |
|
|
|
img_batch.append(face) |
|
mel_batch.append(m) |
|
frame_batch.append(frame_to_save) |
|
coords_batch.append(coords) |
|
|
|
if len(img_batch) >= wav2lip_batch_size: |
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) |
|
|
|
img_masked = img_batch.copy() |
|
img_masked[:, img_size // 2 :] = 0 |
|
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.0 |
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) |
|
|
|
yield img_batch, mel_batch, frame_batch, coords_batch |
|
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], [] |
|
|
|
if len(img_batch) > 0: |
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) |
|
|
|
img_masked = img_batch.copy() |
|
img_masked[:, img_size // 2 :] = 0 |
|
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.0 |
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) |
|
|
|
yield img_batch, mel_batch, frame_batch, coords_batch |
|
|
|
|
|
def ov_inference( |
|
face_path, |
|
audio_path, |
|
face_detection_path="models/face_detection.xml", |
|
wav2lip_path="models/wav2lip.xml", |
|
inference_device="CPU", |
|
wav2lip_batch_size=128, |
|
outfile="results/result_voice.mp4", |
|
resize_factor=1, |
|
rotate=False, |
|
crop=[0, -1, 0, -1], |
|
mel_step_size=16, |
|
box=[-1, -1, -1, -1], |
|
static=False, |
|
img_size=96, |
|
face_det_batch_size=16, |
|
pads=[0, 10, 0, 0], |
|
nosmooth=False, |
|
): |
|
print("Reading video frames...") |
|
|
|
video_stream = cv2.VideoCapture(face_path) |
|
fps = video_stream.get(cv2.CAP_PROP_FPS) |
|
|
|
full_frames = [] |
|
while 1: |
|
still_reading, frame = video_stream.read() |
|
if not still_reading: |
|
video_stream.release() |
|
break |
|
if resize_factor > 1: |
|
frame = cv2.resize(frame, (frame.shape[1] // resize_factor, frame.shape[0] // resize_factor)) |
|
|
|
if rotate: |
|
frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE) |
|
|
|
y1, y2, x1, x2 = crop |
|
if x2 == -1: |
|
x2 = frame.shape[1] |
|
if y2 == -1: |
|
y2 = frame.shape[0] |
|
|
|
frame = frame[y1:y2, x1:x2] |
|
|
|
full_frames.append(frame) |
|
|
|
print("Number of frames available for inference: " + str(len(full_frames))) |
|
|
|
core = ov.Core() |
|
|
|
if not audio_path.endswith(".wav"): |
|
print("Extracting raw audio...") |
|
command = "ffmpeg -y -i {} -strict -2 {}".format(audio_path, "temp/temp.wav") |
|
|
|
subprocess.call(command, shell=True) |
|
audio_path = "temp/temp.wav" |
|
|
|
wav = audio.load_wav(audio_path, 16000) |
|
mel = audio.melspectrogram(wav) |
|
print(mel.shape) |
|
|
|
if np.isnan(mel.reshape(-1)).sum() > 0: |
|
raise ValueError("Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again") |
|
|
|
mel_chunks = [] |
|
mel_idx_multiplier = 80.0 / fps |
|
i = 0 |
|
while 1: |
|
start_idx = int(i * mel_idx_multiplier) |
|
if start_idx + mel_step_size > len(mel[0]): |
|
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size :]) |
|
break |
|
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size]) |
|
i += 1 |
|
|
|
print("Length of mel chunks: {}".format(len(mel_chunks))) |
|
|
|
full_frames = full_frames[: len(mel_chunks)] |
|
batch_size = wav2lip_batch_size |
|
gen = datagen(full_frames.copy(), mel_chunks, box, static, face_det_batch_size, pads, nosmooth, img_size, wav2lip_batch_size, face_detection_path) |
|
for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen, total=int(np.ceil(float(len(mel_chunks)) / batch_size)))): |
|
if i == 0: |
|
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device) |
|
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device) |
|
compiled_wav2lip_model = core.compile_model(wav2lip_path, inference_device) |
|
print("Model loaded") |
|
|
|
frame_h, frame_w = full_frames[0].shape[:-1] |
|
out = cv2.VideoWriter("C:/programacionEjercicios/miwav2lipv6/src/Wav2Lip/temp/result.avi", cv2.VideoWriter_fourcc(*"DIVX"), fps, (frame_w, frame_h)) |
|
pred_ov = compiled_wav2lip_model({"audio_sequences": mel_batch.numpy(), "face_sequences": img_batch.numpy()})[0] |
|
else: |
|
img_batch = np.transpose(img_batch, (0, 3, 1, 2)) |
|
mel_batch = np.transpose(mel_batch, (0, 3, 1, 2)) |
|
pred_ov = compiled_wav2lip_model({"audio_sequences": mel_batch, "face_sequences": img_batch})[0] |
|
|
|
pred_ov = compiled_wav2lip_model({"audio_sequences": mel_batch, "face_sequences": img_batch})[0] |
|
pred_ov = pred_ov.transpose(0, 2, 3, 1) * 255.0 |
|
for p, f, c in zip(pred_ov, frames, coords): |
|
y1, y2, x1, x2 = c |
|
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1)) |
|
|
|
f[y1:y2, x1:x2] = p |
|
out.write(f) |
|
|
|
out.release() |
|
|
|
command = "ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}".format(audio_path, "C:/programacionEjercicios/miwav2lipv6/src/Wav2Lip/temp/result.avi", outfile) |
|
subprocess.call(command, shell=True) |
|
|
|
return outfile |
|
|