OAGen_Linear / app.py
firatozdemir's picture
updated scripts
1e6244a
raw
history blame
1.87 kB
import sys, os
import gradio as gr
import numpy as np
sys.path.append('stylegan3')
import utils
def to_uint8(im, ndim=2):
im -= np.min(im)
im /= np.max(im)
im *= 255.
im = np.asarray(im, dtype=np.uint8)
if ndim == 3:
if im.ndim == 2:
im = np.expand_dims(im, axis=-1)
elif im.ndim == 3:
if im.shape[0] == 1:
np.transpose(im, (1,2,0))
im = np.tile(im, (1,1,3)) #make fake RGB
return im
elif ndim ==2:
if im.ndim == 2:
return im
if im.ndim == 3:
if im.shape[0] == 1: #[1, H, W]
return im[0,...]
elif im.shape[2] == 1: #[H, W, 1]
return im[...,0]
else:
raise AssertionError(f"Unexpected image passed to to_uint8 with shape: {np.shape(im)}.")
in_gpu = False
num_images = 1
G = utils.load_default_gen(in_gpu=in_gpu)
sampler = utils.SampleFromGAN(G=G, z_shp=[num_images, G.z_dim], in_gpu=in_gpu)
def sample_GAN():
im = sampler()
im = im.numpy()
im = np.transpose(im, (1,2,0))
im = np.squeeze(im) #if single channel (yes), drop it.
# print(f"sample_linearBP: im shape: {im.shape}; min: {np.min(im)}, max: {np.max(im)}.")
im = to_uint8(im, ndim=2)
# print(f'1. uint image shape: {im.shape}')
return im
title="Generate fake linear array images"
description="Generate fake linear array images."
with gr.Blocks() as demo:
gr.Markdown(description)
with gr.Row():
with gr.Column():
button_gen = gr.Button("Generate fake linear image")
with gr.Column():
output_im = gr.Image(type="numpy", height=256, width=256, image_mode="L", label="fake image", interactive=False) #grayscale image
button_gen.click(sample_GAN, inputs=None, outputs=output_im)
demo.launch(share=False)