Spaces:
Runtime error
Runtime error
Upload recommendation_model.py
Browse files- recommendation_model.py +219 -0
recommendation_model.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import speech_recognition as sr
|
2 |
+
from nltk.sentiment.vader import SentimentIntensityAnalyzer
|
3 |
+
import spacy, os
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import nltk
|
7 |
+
from nltk.tokenize import word_tokenize
|
8 |
+
from nltk.corpus import stopwords
|
9 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
10 |
+
from autocorrect import Speller
|
11 |
+
from datetime import datetime
|
12 |
+
from transformers import pipeline
|
13 |
+
from translate import Translator
|
14 |
+
from nltk.stem import WordNetLemmatizer
|
15 |
+
from nltk.stem import PorterStemmer
|
16 |
+
from nltk.corpus import wordnet
|
17 |
+
from googletrans import Translator
|
18 |
+
import pickle
|
19 |
+
|
20 |
+
class recommendationModel:
|
21 |
+
def __init__(self):
|
22 |
+
self.translator = Translator()
|
23 |
+
self.zero_shot_classifier = pipeline('zero-shot-classification', model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli")
|
24 |
+
self.spell_checker = Speller(lang='en')
|
25 |
+
self.porter = PorterStemmer()
|
26 |
+
self.lemmatizer = WordNetLemmatizer()
|
27 |
+
self.nlp = spacy.load("en_core_web_sm")
|
28 |
+
# self.spell_checker = Speller(lang='en')
|
29 |
+
self.class_names = ["positive :)", "neutral :|", "negative :("]
|
30 |
+
self.data1 = None
|
31 |
+
|
32 |
+
def detect_language(self,user_input):
|
33 |
+
det = self.translator.detect(user_input)
|
34 |
+
if det.lang!='en':
|
35 |
+
trans = self.translator.translate(user_input,'en')
|
36 |
+
print("\nTranslation:",trans.text)
|
37 |
+
return trans.text
|
38 |
+
else:
|
39 |
+
return user_input
|
40 |
+
|
41 |
+
def remove_stopwords(self,tags):
|
42 |
+
words = word_tokenize(tags)
|
43 |
+
stop_words = set(stopwords.words('english'))
|
44 |
+
filtered_words = [word for word in words if word not in stop_words]
|
45 |
+
filtered_text = " ".join(filtered_words)
|
46 |
+
return filtered_text
|
47 |
+
|
48 |
+
def correct_spelling(self,word):
|
49 |
+
return self.spell_checker(word)
|
50 |
+
|
51 |
+
def porterStemmer(self,text):
|
52 |
+
words = word_tokenize(text)
|
53 |
+
stemmed_words = [self.porter.stem(word) for word in words]
|
54 |
+
stemmed_sentence = ' '.join(stemmed_words)
|
55 |
+
return stemmed_sentence
|
56 |
+
|
57 |
+
def correct_spellings_in_text(self,text):
|
58 |
+
words = nltk.word_tokenize(text)
|
59 |
+
corrected_words = [self.correct_spelling(word) for word in words]
|
60 |
+
corrected_text = " ".join(corrected_words)
|
61 |
+
return corrected_text
|
62 |
+
|
63 |
+
def preprocess_input(self,userInput):
|
64 |
+
corrected_text = self.correct_spellings_in_text(userInput)
|
65 |
+
words = nltk.word_tokenize(corrected_text.lower())
|
66 |
+
sentence = " ".join(words)
|
67 |
+
sentence = self.remove_stopwords(sentence)
|
68 |
+
# sentence = porterStemmer(sentence)
|
69 |
+
keywords = nltk.word_tokenize(sentence.lower())
|
70 |
+
return keywords, sentence
|
71 |
+
|
72 |
+
def calculate_score(self,about, keywords):
|
73 |
+
score = 0
|
74 |
+
for keyword in keywords:
|
75 |
+
if keyword in about.lower():
|
76 |
+
score += 1
|
77 |
+
return score
|
78 |
+
|
79 |
+
def zero_shot_classifier_sent(self,userInput):
|
80 |
+
zsc_output = self.zero_shot_classifier(userInput, self.class_names)
|
81 |
+
zsc_labels = zsc_output['labels']
|
82 |
+
zsc_scores = zsc_output['scores']
|
83 |
+
return zsc_labels, zsc_scores
|
84 |
+
|
85 |
+
def recommendArticle(self,userInput,tfidf_scores,output_csv):
|
86 |
+
zsc_labels, zsc_scores = self.zero_shot_classifier_sent(userInput)
|
87 |
+
label_score_pairs = zip(zsc_labels, zsc_scores)
|
88 |
+
max_label, max_score = max(label_score_pairs, key=lambda pair: pair[1])
|
89 |
+
userInput = self.detect_language(userInput) #change to english
|
90 |
+
keywords, sentence = self.preprocess_input(userInput)
|
91 |
+
self.data1['score'] = self.data1['description'].apply(lambda x: self.calculate_score(x, keywords))
|
92 |
+
|
93 |
+
# Sort articles based on score
|
94 |
+
recommended_articles = self.data1.sort_values(by='score', ascending=False)
|
95 |
+
|
96 |
+
print("\n*****************\nRecommended Articles:")
|
97 |
+
for index, row in recommended_articles.head(10).iterrows():
|
98 |
+
print(f"\nTitle: {row['title']}")
|
99 |
+
print(f"Keywords: {row['keywords']}")
|
100 |
+
print(f"Class: {row['class']}")
|
101 |
+
print(f"URL: {row['url']}")
|
102 |
+
|
103 |
+
# Prepare data to append to CSV
|
104 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
105 |
+
output_data = {
|
106 |
+
'Timestamp': timestamp,
|
107 |
+
'User Input': userInput,
|
108 |
+
'Emotion': max_label,
|
109 |
+
'Sentiment Score': max_score,
|
110 |
+
'Keywords': ", ".join(keywords)}
|
111 |
+
|
112 |
+
# Append output data to CSV
|
113 |
+
output_df = pd.DataFrame(output_data, index=[0])
|
114 |
+
output_df.to_csv(output_csv, mode='a', header=not os.path.exists(output_csv), index=False)
|
115 |
+
|
116 |
+
def convert_audio_to_text(self,recognizer, source, duration):
|
117 |
+
print("Listening for audio...")
|
118 |
+
audio_data = recognizer.listen(source, timeout=duration, phrase_time_limit=duration)
|
119 |
+
try:
|
120 |
+
text = recognizer.recognize_google(audio_data)
|
121 |
+
return text
|
122 |
+
except sr.WaitTimeoutError:
|
123 |
+
print("Listening timed out. No speech detected.")
|
124 |
+
return ""
|
125 |
+
except sr.UnknownValueError:
|
126 |
+
print("Oops, it seems we're having trouble understanding the audio. Let's try again with clearer sound.")
|
127 |
+
return ""
|
128 |
+
except sr.RequestError as e:
|
129 |
+
print(f"Could not request results; {e}")
|
130 |
+
return ""
|
131 |
+
|
132 |
+
def extract_keywords_tfidf(self,article_descriptions):
|
133 |
+
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
|
134 |
+
tfidf_matrix = tfidf_vectorizer.fit_transform(article_descriptions)
|
135 |
+
feature_names = tfidf_vectorizer.get_feature_names_out()
|
136 |
+
article_tfidf_scores = tfidf_matrix[0].toarray().flatten()
|
137 |
+
keyword_scores = dict(zip(feature_names, article_tfidf_scores))
|
138 |
+
return keyword_scores
|
139 |
+
|
140 |
+
def main(self,inputs):
|
141 |
+
output_csv = "Output2.csv" # Specify the output CSV file
|
142 |
+
print("Choose input method:\n1. Text\n2. Voice\n3. Audio File")
|
143 |
+
while True:
|
144 |
+
choice = input("\nEnter your choice (1 or 2 or 3): ")
|
145 |
+
|
146 |
+
if choice == '1':
|
147 |
+
user_input1 = input("Enter your message: ")
|
148 |
+
user_input1 = self.detect_language(user_input1)
|
149 |
+
inputs.append(user_input1)
|
150 |
+
user_input = ' '.join(inputs)
|
151 |
+
print(user_input)
|
152 |
+
print("\nProcessing....")
|
153 |
+
tfidf_scores = self.extract_keywords_tfidf(self.data1['description'])
|
154 |
+
self.recommendArticle(user_input, tfidf_scores, output_csv)
|
155 |
+
break
|
156 |
+
|
157 |
+
elif choice == '2':
|
158 |
+
recognizer = sr.Recognizer()
|
159 |
+
with sr.Microphone() as source:
|
160 |
+
recognizer.adjust_for_ambient_noise(source) # Adjust for ambient noise
|
161 |
+
text1 = self.convert_audio_to_text(recognizer, source, 15)
|
162 |
+
|
163 |
+
if text1:
|
164 |
+
text = self.detect_language(text1)
|
165 |
+
inputs.append(text1)
|
166 |
+
text = ' '.join(inputs)
|
167 |
+
print(text)
|
168 |
+
print("\nProcessing....")
|
169 |
+
tfidf_scores = self.extract_keywords_tfidf(self.data1['description'])
|
170 |
+
self.recommendArticle(text, tfidf_scores, output_csv)
|
171 |
+
break
|
172 |
+
else:
|
173 |
+
print("Oops, it seems we're having trouble understanding the audio. Let's try again with clearer sound.")
|
174 |
+
|
175 |
+
elif choice == '3':
|
176 |
+
filename = input("Enter the path to the audio file: ")
|
177 |
+
recognizer = sr.Recognizer()
|
178 |
+
with sr.AudioFile(filename) as source:
|
179 |
+
recognizer.adjust_for_ambient_noise(source) # Adjust for ambient noise
|
180 |
+
text1 = self.convert_audio_to_text(recognizer, source, 1000)
|
181 |
+
|
182 |
+
if text1:
|
183 |
+
text = self.detect_language(text1)
|
184 |
+
inputs.append(text1)
|
185 |
+
text = ' '.join(inputs)
|
186 |
+
print(text)
|
187 |
+
print("\nProcessing....")
|
188 |
+
tfidf_scores = self.extract_keywords_tfidf(self.data1['description'])
|
189 |
+
self.recommendArticle(text, tfidf_scores, output_csv)
|
190 |
+
break
|
191 |
+
else:
|
192 |
+
print("Oops, it seems we're having trouble finding the file. Let's try again with the correct path.")
|
193 |
+
else:
|
194 |
+
print("Invalid choice. Please enter 1 or 2 or 3.")
|
195 |
+
|
196 |
+
|
197 |
+
#PROPER PICKLING AND UNPICKLING ATTRIBUTES
|
198 |
+
def __getstate__(self):
|
199 |
+
# Exclude specific attributes from being pickled
|
200 |
+
excluded_attrs = ['translator', 'zero_shot_classifier', 'nlp'] # Add other attributes here if needed
|
201 |
+
state = self.__dict__.copy()
|
202 |
+
for attr in excluded_attrs:
|
203 |
+
if attr in state:
|
204 |
+
del state[attr]
|
205 |
+
return state
|
206 |
+
|
207 |
+
def __setstate__(self, state):
|
208 |
+
# Restore the state and recreate excluded attributes
|
209 |
+
self.__dict__.update(state)
|
210 |
+
self.translator = Translator() # Recreate translator
|
211 |
+
self.zero_shot_classifier = pipeline('zero-shot-classification', model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli") # Recreate zero_shot_classifier
|
212 |
+
self.nlp = spacy.load("en_core_web_sm") # Recreate nlp
|
213 |
+
# Recreate other excluded attributes here if needed
|
214 |
+
|
215 |
+
|
216 |
+
model = recommendationModel()
|
217 |
+
|
218 |
+
with open('model2.pkl', 'wb') as f:
|
219 |
+
pickle.dump(model, f)
|