fiona10's picture
Create app.py
65fb4e8
raw
history blame
614 Bytes
from tensorflow import keras
import gradio as gr
path_to_model = "/content/drive/MyDrive/modelPredict.h5"
model = keras.models.load_model(path_to_model)
def classify_image(inp):
# inp = load_image(inp_path)
inp = inp.reshape((-1, 224, 224, 3))
prediction = model.predict(inp).tolist()[0]
class_names = ['Bacterialblight', 'Blast', 'Brownspot', 'Tungro']
return {class_names[i]: prediction[i] for i in range(4)}
gr.Interface(fn=classify_image,
inputs=gr.inputs.Image(shape=(224, 224)),
outputs=gr.outputs.Label(num_top_classes=4),
).launch(debug=True)