mirageco commited on
Commit
7723d4d
·
1 Parent(s): 4ca685a

Minor changes of filter_model logic

Browse files
Files changed (1) hide show
  1. app.py +41 -15
app.py CHANGED
@@ -134,23 +134,48 @@ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
134
  def filter_models(
135
  df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
136
  ) -> pd.DataFrame:
 
 
137
  # Show all models
138
  if show_deleted:
139
  filtered_df = df
140
- else: # Show only still on the hub models
141
  filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
142
 
143
- type_emoji = [t[0] for t in type_query]
144
- filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
145
- filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
146
 
147
- numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
148
- params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
149
- mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
150
- filtered_df = filtered_df.loc[mask]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
 
152
  return filtered_df
153
 
 
 
154
  def uncheck_all():
155
  return [], [], [], [], [], [], [], [], [], []
156
 
@@ -262,32 +287,33 @@ with demo:
262
  )
263
  with gr.Row():
264
  deleted_models_visibility = gr.Checkbox(
265
- value=False, label="Show gated/private/deleted models", interactive=True
266
  )
267
  with gr.Column(min_width=320):
268
  #with gr.Box(elem_id="box-filter"):
269
  filter_columns_type = gr.CheckboxGroup(
270
  label="Model types",
271
- choices=[t.to_str() for t in ModelType],
272
- value=[t.to_str() for t in ModelType],
273
  interactive=True,
274
  elem_id="filter-columns-type",
275
  )
276
  filter_columns_precision = gr.CheckboxGroup(
277
  label="Precision",
278
- choices=[i.value.name for i in Precision],
279
- value=[i.value.name for i in Precision],
280
  interactive=True,
281
  elem_id="filter-columns-precision",
282
  )
283
  filter_columns_size = gr.CheckboxGroup(
284
  label="Model sizes (in billions of parameters)",
285
- choices=list(NUMERIC_INTERVALS.keys()),
286
- value=list(NUMERIC_INTERVALS.keys()),
287
  interactive=True,
288
  elem_id="filter-columns-size",
289
  )
290
 
 
291
  leaderboard_table = gr.Dataframe(
292
  value=leaderboard_df[
293
  [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
 
134
  def filter_models(
135
  df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
136
  ) -> pd.DataFrame:
137
+ print("Initial number of models:", len(df))
138
+
139
  # Show all models
140
  if show_deleted:
141
  filtered_df = df
142
+ else:
143
  filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
144
 
145
+ print("After hub filter:", len(filtered_df))
 
 
146
 
147
+ if "All" not in type_query:
148
+ if "?" in type_query:
149
+ filtered_df = filtered_df.loc[~df[AutoEvalColumn.model_type_symbol.name].isin([t for t in ModelType if t != "?"])]
150
+ else:
151
+ type_emoji = [t[0] for t in type_query]
152
+ filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
153
+
154
+ print("After type filter:", len(filtered_df))
155
+
156
+ if "All" not in precision_query:
157
+ if "?" in precision_query:
158
+ filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isna()]
159
+ else:
160
+ filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
161
+
162
+ print("After precision filter:", len(filtered_df))
163
+
164
+ if "All" not in size_query:
165
+ if "?" in size_query:
166
+ filtered_df = filtered_df.loc[df[AutoEvalColumn.params.name].isna()]
167
+ else:
168
+ numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
169
+ params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
170
+ mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
171
+ filtered_df = filtered_df.loc[mask]
172
+
173
+ print("After size filter:", len(filtered_df))
174
 
175
  return filtered_df
176
 
177
+
178
+
179
  def uncheck_all():
180
  return [], [], [], [], [], [], [], [], [], []
181
 
 
287
  )
288
  with gr.Row():
289
  deleted_models_visibility = gr.Checkbox(
290
+ value=True, label="Show gated/private/deleted models", interactive=True
291
  )
292
  with gr.Column(min_width=320):
293
  #with gr.Box(elem_id="box-filter"):
294
  filter_columns_type = gr.CheckboxGroup(
295
  label="Model types",
296
+ choices=["All"] + [t.to_str() for t in ModelType],
297
+ value=["All"],
298
  interactive=True,
299
  elem_id="filter-columns-type",
300
  )
301
  filter_columns_precision = gr.CheckboxGroup(
302
  label="Precision",
303
+ choices=["All"] + [i.value.name for i in Precision],
304
+ value=["All"],
305
  interactive=True,
306
  elem_id="filter-columns-precision",
307
  )
308
  filter_columns_size = gr.CheckboxGroup(
309
  label="Model sizes (in billions of parameters)",
310
+ choices=["All"] + list(NUMERIC_INTERVALS.keys()) + ["?"],
311
+ value=["All"],
312
  interactive=True,
313
  elem_id="filter-columns-size",
314
  )
315
 
316
+
317
  leaderboard_table = gr.Dataframe(
318
  value=leaderboard_df[
319
  [c.name for c in fields(AutoEvalColumn) if c.never_hidden]