Pierre Chapuis
fix bbox when resizing large vertical images
fb667fe unverified
raw
history blame
11 kB
import tempfile
import time
from collections.abc import Sequence
from typing import Any, cast
import gradio as gr
import numpy as np
import pillow_heif
import spaces
import torch
from gradio_image_annotation import image_annotator
from gradio_imageslider import ImageSlider
from PIL import Image
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
from refiners.fluxion.utils import no_grad
from refiners.solutions import BoxSegmenter
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
BoundingBox = tuple[int, int, int, int]
pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# weird dance because ZeroGPU
segmenter = BoxSegmenter(device="cpu")
segmenter.device = device
segmenter.model = segmenter.model.to(device=segmenter.device)
gd_model_path = "IDEA-Research/grounding-dino-base"
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path)
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32)
gd_model = gd_model.to(device=device) # type: ignore
assert isinstance(gd_model, GroundingDinoForObjectDetection)
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
if not bboxes:
return None
for bbox in bboxes:
assert len(bbox) == 4
assert all(isinstance(x, int) for x in bbox)
return (
min(bbox[0] for bbox in bboxes),
min(bbox[1] for bbox in bboxes),
max(bbox[2] for bbox in bboxes),
max(bbox[3] for bbox in bboxes),
)
def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor:
x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1)
return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1)
def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None:
assert isinstance(gd_processor, GroundingDinoProcessor)
# Grounding Dino expects a dot after each category.
inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device)
with no_grad():
outputs = gd_model(**inputs)
width, height = img.size
results: dict[str, Any] = gd_processor.post_process_grounded_object_detection(
outputs,
inputs["input_ids"],
target_sizes=[(height, width)],
)[0]
assert "boxes" in results and isinstance(results["boxes"], torch.Tensor)
bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height)
return bbox_union(bboxes.numpy().tolist())
def apply_mask(
img: Image.Image,
mask_img: Image.Image,
defringe: bool = True,
) -> Image.Image:
assert img.size == mask_img.size
img = img.convert("RGB")
mask_img = mask_img.convert("L")
if defringe:
# Mitigate edge halo effects via color decontamination
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha))
img = Image.fromarray((foreground * 255).astype("uint8"))
result = Image.new("RGBA", img.size)
result.paste(img, (0, 0), mask_img)
return result
@spaces.GPU
def _gpu_process(
img: Image.Image,
prompt: str | BoundingBox | None,
) -> tuple[Image.Image, BoundingBox | None, list[str]]:
# Because of ZeroGPU shenanigans, we need a *single* function with the
# `spaces.GPU` decorator that *does not* contain postprocessing.
time_log: list[str] = []
if isinstance(prompt, str):
t0 = time.time()
bbox = gd_detect(img, prompt)
time_log.append(f"detect: {time.time() - t0}")
if not bbox:
print(time_log[0])
raise gr.Error("No object detected")
else:
bbox = prompt
t0 = time.time()
mask = segmenter(img, bbox)
time_log.append(f"segment: {time.time() - t0}")
return mask, bbox, time_log
def _process(
img: Image.Image,
prompt: str | BoundingBox | None,
) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
# enforce max dimensions for pymatting performance reasons
if img.width > 2048 or img.height > 2048:
orig_res = max(img.width, img.height)
img.thumbnail((2048, 2048))
if isinstance(prompt, tuple):
x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in prompt)
prompt = (x0, y0, x1, y1)
mask, bbox, time_log = _gpu_process(img, prompt)
t0 = time.time()
masked_alpha = apply_mask(img, mask, defringe=True)
time_log.append(f"crop: {time.time() - t0}")
print(", ".join(time_log))
masked_rgb = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
thresholded = mask.point(lambda p: 255 if p > 10 else 0)
bbox = thresholded.getbbox()
to_dl = masked_alpha.crop(bbox)
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
to_dl.save(temp, format="PNG")
temp.close()
return (img, masked_rgb), gr.DownloadButton(value=temp.name, interactive=True)
def process_bbox(prompts: dict[str, Any]) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
assert isinstance(img := prompts["image"], Image.Image)
assert isinstance(boxes := prompts["boxes"], list)
if len(boxes) == 1:
assert isinstance(box := boxes[0], dict)
bbox = tuple(box[k] for k in ["xmin", "ymin", "xmax", "ymax"])
else:
assert len(boxes) == 0
bbox = None
return _process(img, bbox)
def on_change_bbox(img: Image.Image | None):
return gr.update(interactive=bool(img))
def process_prompt(img: Image.Image, prompt: str) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
return _process(img, prompt)
def on_change_prompt(img: Image.Image | None, prompt: str | None):
return gr.update(interactive=bool(img and prompt))
TITLE = """
<center>
<h1 style="font-size: 1.5rem; margin-bottom: 0.5rem;">
Object Cutter Powered By Refiners
</h1>
<div style="
display: flex;
align-items: center;
justify-content: center;
gap: 0.5rem;
margin-bottom: 0.5rem;
font-size: 1.25rem;
flex-wrap: wrap;
">
<a href="https://github.com/finegrain-ai/refiners" target="_blank">[Refiners]</a>
<a href="https://finegrain.ai/" target="_blank">[Finegrain]</a>
<a
href="https://huggingface.co/spaces/finegrain/finegrain-object-eraser"
target="_blank"
>[Finegrain Object Eraser]</a>
<a
href="https://huggingface.co/spaces/finegrain/finegrain-image-enhancer"
target="_blank"
>[Finegrain Image Enhancer]</a>
</div>
<p>
Create high-quality HD cutouts for any object in your image with just a text prompt — no manual work required!
<br>
The object will be available on a transparent background, ready to paste elsewhere.
</p>
<p>
This space uses the
<a
href="https://huggingface.co/finegrain/finegrain-box-segmenter"
target="_blank"
>Finegrain Box Segmenter model</a>,
trained with a mix of natural data curated by Finegrain and
<a
href="https://huggingface.co/datasets/Nfiniteai/product-masks-sample"
target="_blank"
>synthetic data provided by Nfinite</a>.
<br>
It is powered by Refiners, our open source micro-framework for simple foundation model adaptation.
If you enjoyed it, please consider starring Refiners on GitHub!
</p>
<a href="https://github.com/finegrain-ai/refiners" target="_blank">
<img src="https://img.shields.io/github/stars/finegrain-ai/refiners?style=social" />
</a>
</center>
"""
with gr.Blocks() as demo:
gr.HTML(TITLE)
with gr.Tab("By prompt", id="tab_prompt"):
with gr.Row():
with gr.Column():
iimg = gr.Image(type="pil", label="Input")
prompt = gr.Textbox(label="What should we cut?")
btn = gr.ClearButton(value="Cut Out Object", interactive=False)
with gr.Column():
oimg = ImageSlider(label="Before / After", show_download_button=False, interactive=False)
dlbt = gr.DownloadButton("Download Cutout", interactive=False)
btn.add(oimg)
for inp in [iimg, prompt]:
inp.change(
fn=on_change_prompt,
inputs=[iimg, prompt],
outputs=[btn],
)
btn.click(
fn=process_prompt,
inputs=[iimg, prompt],
outputs=[oimg, dlbt],
api_name=False,
)
examples = [
[
"examples/potted-plant.jpg",
"potted plant",
],
[
"examples/chair.jpg",
"chair",
],
[
"examples/black-lamp.jpg",
"black lamp",
],
]
ex = gr.Examples(
examples=examples,
inputs=[iimg, prompt],
outputs=[oimg, dlbt],
fn=process_prompt,
cache_examples=True,
)
with gr.Tab("By bounding box", id="tab_bb"):
with gr.Row():
with gr.Column():
annotator = image_annotator(
image_type="pil",
disable_edit_boxes=True,
show_download_button=False,
show_share_button=False,
single_box=True,
label="Input",
)
btn = gr.ClearButton(value="Cut Out Object", interactive=False)
with gr.Column():
oimg = ImageSlider(label="Before / After", show_download_button=False)
dlbt = gr.DownloadButton("Download Cutout", interactive=False)
btn.add(oimg)
iimg.change(
fn=on_change_bbox,
inputs=[iimg],
outputs=[btn],
)
btn.click(
fn=process_bbox,
inputs=[annotator],
outputs=[oimg, dlbt],
api_name=False,
)
examples = [
{
"image": "examples/potted-plant.jpg",
"boxes": [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}],
},
{
"image": "examples/chair.jpg",
"boxes": [{"xmin": 98, "ymin": 330, "xmax": 973, "ymax": 1468}],
},
{
"image": "examples/black-lamp.jpg",
"boxes": [{"xmin": 88, "ymin": 148, "xmax": 700, "ymax": 1414}],
},
]
ex = gr.Examples(
examples=examples,
inputs=[annotator],
outputs=[oimg, dlbt],
fn=process_bbox,
cache_examples=True,
)
demo.queue(max_size=30, api_open=False)
demo.launch(show_api=False)