1aurent's picture
Update src/app.py
e678d7d verified
raw
history blame
9.03 kB
from pathlib import Path
import gradio as gr
import spaces
import torch
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from PIL import Image
import pillow_heif
from refiners.fluxion.utils import manual_seed
from refiners.foundationals.latent_diffusion import Solver, solvers
from enhancer import ESRGANUpscaler, ESRGANUpscalerCheckpoints
pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()
TITLE = """
<center>
<h1 style="font-size: 1.5rem; margin-bottom: 0.5rem;">
Image Enhancer Powered By Refiners
</h1>
<div style="display: flex; align-items: center; justify-content: center; gap: 0.5rem; margin-bottom: 0.5rem; font-size: 1.25rem; flex-wrap: wrap;">
<a href="https://blog.finegrain.ai/posts/reproducing-clarity-upscaler/" target="_blank">[Blog Post]</a>
<a href="https://github.com/finegrain-ai/refiners" target="_blank">[Refiners]</a>
<a href="https://finegrain.ai/" target="_blank">[Finegrain]</a>
<a href="https://huggingface.co/spaces/finegrain/finegrain-object-eraser" target="_blank">[Finegrain Object Eraser]</a>
<a href="https://huggingface.co/spaces/finegrain/finegrain-object-cutter" target="_blank">[Finegrain Object Cutter]</a>
</div>
<p>
Turn low resolution images into high resolution versions with added generated details (your image will be modified).
</p>
<p>
This space is powered by Refiners, our open source micro-framework for simple foundation model adaptation.
If you enjoyed it, please consider starring Refiners on GitHub!
</p>
<a href="https://github.com/finegrain-ai/refiners" target="_blank">
<img src="https://img.shields.io/github/stars/finegrain-ai/refiners?style=social" />
</a>
</center>
"""
CHECKPOINTS = ESRGANUpscalerCheckpoints(
unet=Path(
hf_hub_download(
repo_id="refiners/juggernaut.reborn.sd1_5.unet",
filename="model.safetensors",
revision="347d14c3c782c4959cc4d1bb1e336d19f7dda4d2",
)
),
clip_text_encoder=Path(
hf_hub_download(
repo_id="refiners/juggernaut.reborn.sd1_5.text_encoder",
filename="model.safetensors",
revision="744ad6a5c0437ec02ad826df9f6ede102bb27481",
)
),
lda=Path(
hf_hub_download(
repo_id="refiners/juggernaut.reborn.sd1_5.autoencoder",
filename="model.safetensors",
revision="3c1aae3fc3e03e4a2b7e0fa42b62ebb64f1a4c19",
)
),
controlnet_tile=Path(
hf_hub_download(
repo_id="refiners/controlnet.sd1_5.tile",
filename="model.safetensors",
revision="48ced6ff8bfa873a8976fa467c3629a240643387",
)
),
esrgan=Path(
hf_hub_download(
repo_id="philz1337x/upscaler",
filename="4x-UltraSharp.pth",
revision="011deacac8270114eb7d2eeff4fe6fa9a837be70",
)
),
negative_embedding=Path(
hf_hub_download(
repo_id="philz1337x/embeddings",
filename="JuggernautNegative-neg.pt",
revision="203caa7e9cc2bc225031a4021f6ab1ded283454a",
)
),
negative_embedding_key="string_to_param.*",
loras={
"more_details": Path(
hf_hub_download(
repo_id="philz1337x/loras",
filename="more_details.safetensors",
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
)
),
"sdxl_render": Path(
hf_hub_download(
repo_id="philz1337x/loras",
filename="SDXLrender_v2.0.safetensors",
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
)
),
},
)
LORA_SCALES = {
"more_details": 0.5,
"sdxl_render": 1.0,
}
# initialize the enhancer, on the cpu
DEVICE_CPU = torch.device("cpu")
DTYPE = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
enhancer = ESRGANUpscaler(checkpoints=CHECKPOINTS, device=DEVICE_CPU, dtype=DTYPE)
# "move" the enhancer to the gpu, this is handled by Zero GPU
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
enhancer.to(device=DEVICE, dtype=DTYPE)
@spaces.GPU
def process(
input_image: Image.Image,
prompt: str = "masterpiece, best quality, highres",
negative_prompt: str = "worst quality, low quality, normal quality",
seed: int = 42,
upscale_factor: int = 2,
controlnet_scale: float = 0.6,
controlnet_decay: float = 1.0,
condition_scale: int = 6,
tile_width: int = 112,
tile_height: int = 144,
denoise_strength: float = 0.35,
num_inference_steps: int = 18,
solver: str = "DDIM",
) -> tuple[Image.Image, Image.Image]:
manual_seed(seed)
solver_type: type[Solver] = getattr(solvers, solver)
enhanced_image = enhancer.upscale(
image=input_image,
prompt=prompt,
negative_prompt=negative_prompt,
upscale_factor=upscale_factor,
controlnet_scale=controlnet_scale,
controlnet_scale_decay=controlnet_decay,
condition_scale=condition_scale,
tile_size=(tile_height, tile_width),
denoise_strength=denoise_strength,
num_inference_steps=num_inference_steps,
loras_scale=LORA_SCALES,
solver_type=solver_type,
)
return (input_image, enhanced_image)
with gr.Blocks() as demo:
gr.HTML(TITLE)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
run_button = gr.ClearButton(components=None, value="Enhance Image")
with gr.Column():
output_slider = ImageSlider(label="Before / After")
run_button.add(output_slider)
with gr.Accordion("Advanced Options", open=False):
prompt = gr.Textbox(
label="Prompt",
placeholder="masterpiece, best quality, highres",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="worst quality, low quality, normal quality",
)
seed = gr.Slider(
minimum=0,
maximum=10_000,
value=42,
step=1,
label="Seed",
)
upscale_factor = gr.Slider(
minimum=1,
maximum=4,
value=2,
step=0.2,
label="Upscale Factor",
)
controlnet_scale = gr.Slider(
minimum=0,
maximum=1.5,
value=0.6,
step=0.1,
label="ControlNet Scale",
)
controlnet_decay = gr.Slider(
minimum=0.5,
maximum=1,
value=1.0,
step=0.025,
label="ControlNet Scale Decay",
)
condition_scale = gr.Slider(
minimum=2,
maximum=20,
value=6,
step=1,
label="Condition Scale",
)
tile_width = gr.Slider(
minimum=64,
maximum=200,
value=112,
step=1,
label="Latent Tile Width",
)
tile_height = gr.Slider(
minimum=64,
maximum=200,
value=144,
step=1,
label="Latent Tile Height",
)
denoise_strength = gr.Slider(
minimum=0,
maximum=1,
value=0.35,
step=0.1,
label="Denoise Strength",
)
num_inference_steps = gr.Slider(
minimum=1,
maximum=30,
value=18,
step=1,
label="Number of Inference Steps",
)
solver = gr.Radio(
choices=["DDIM", "DPMSolver"],
value="DDIM",
label="Solver",
)
run_button.click(
fn=process,
inputs=[
input_image,
prompt,
negative_prompt,
seed,
upscale_factor,
controlnet_scale,
controlnet_decay,
condition_scale,
tile_width,
tile_height,
denoise_strength,
num_inference_steps,
solver,
],
outputs=output_slider,
)
gr.Examples(
examples=[
"examples/kara-eads-L7EwHkq1B2s-unsplash.jpg",
"examples/clarity_bird.webp",
"examples/edgar-infocus-gJH8AqpiSEU-unsplash.jpg",
"examples/jeremy-wallace-_XjW3oN8UOE-unsplash.jpg",
"examples/karina-vorozheeva-rW-I87aPY5Y-unsplash.jpg",
"examples/karographix-photography-hIaOPjYCEj4-unsplash.jpg",
"examples/melissa-walker-horn-gtDYwUIr9Vg-unsplash.jpg",
"examples/ryoji-iwata-X53e51WfjlE-unsplash.jpg",
"examples/tadeusz-lakota-jggQZkITXng-unsplash.jpg",
],
inputs=[input_image],
outputs=output_slider,
fn=process,
cache_examples="lazy",
run_on_click=False,
)
demo.launch(share=False)