filip_praca commited on
Commit
b7aa8c5
1 Parent(s): c75b835

hello test

Browse files
Files changed (1) hide show
  1. app.py +4 -48
app.py CHANGED
@@ -1,51 +1,7 @@
1
  import gradio as gr
2
- from PIL import Image
3
- import requests
4
- import hopsworks
5
- import joblib
6
- import pandas as pd
7
- import os
8
 
9
- project = hopsworks.login(api_key_value=os.environ['UNI_HOPSWORKS_API_KEY'])
10
- fs = project.get_feature_store()
11
-
12
-
13
- mr = project.get_model_registry()
14
- model = mr.get_model("iris_model", version=1)
15
- model_dir = model.download()
16
- model = joblib.load(model_dir + "/iris_model.pkl")
17
- print("Model downloaded")
18
-
19
- def iris(sepal_length, sepal_width, petal_length, petal_width):
20
- print("Calling function")
21
- # df = pd.DataFrame([[sepal_length],[sepal_width],[petal_length],[petal_width]],
22
- df = pd.DataFrame([[sepal_length,sepal_width,petal_length,petal_width]],
23
- columns=['sepal_length','sepal_width','petal_length','petal_width'])
24
- print("Predicting")
25
- print(df)
26
- # 'res' is a list of predictions returned as the label.
27
- res = model.predict(df)
28
- # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
29
- # the first element.
30
- # print("Res: {0}").format(res)
31
- print(res)
32
- flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png"
33
- img = Image.open(requests.get(flower_url, stream=True).raw)
34
- return img
35
-
36
- demo = gr.Interface(
37
- fn=iris,
38
- title="Iris Flower Predictive Analytics",
39
- description="Experiment with sepal/petal lengths/widths to predict which flower it is.",
40
- allow_flagging="never",
41
- inputs=[
42
- gr.inputs.Number(default=2.0, label="sepal length (cm)"),
43
- gr.inputs.Number(default=1.0, label="sepal width (cm)"),
44
- gr.inputs.Number(default=2.0, label="petal length (cm)"),
45
- gr.inputs.Number(default=1.0, label="petal width (cm)"),
46
- ],
47
- outputs=gr.Image(type="pil")
48
- )
49
-
50
- demo.launch(debug=True)
51
 
 
 
 
1
  import gradio as gr
 
 
 
 
 
 
2
 
3
+ def greet(name):
4
+ return "Hello " + name + "!!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
+ iface = gr.Interface(fn=greet,inputs="text",outputs="text")
7
+ iface.launch()