filipzawadka commited on
Commit
4873b31
1 Parent(s): 6390edb

inference pipeline

Browse files
Files changed (2) hide show
  1. app.py +58 -4
  2. requirements.txt +3 -0
app.py CHANGED
@@ -1,8 +1,62 @@
1
  import gradio as gr
2
  import os
 
 
 
 
 
 
 
3
 
4
- def greet(name):
5
- return gr.Image(f"https://maps.googleapis.com/maps/api/staticmap?center=64.777466,-147.489792&zoom=17&size=400x400&maptype=satellite&key={os.environ['GOOGLE_API_KEY']}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
- iface = gr.Interface(fn=greet, inputs="text", outputs="image")
8
- iface.launch()
 
1
  import gradio as gr
2
  import os
3
+ import requests
4
+ from PIL import Image
5
+ from torchvision import transforms
6
+ import torch
7
+ import torchvision.models as models
8
+ import torch.nn as nn
9
+ import io
10
 
11
+ class FarmNet(nn.Module):
12
+ def __init__(self):
13
+ super(FarmNet, self).__init__()
14
+ self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
15
+ self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
16
+ self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
17
+ self.pool = nn.MaxPool2d(2, 2)
18
+ self.fc1 = nn.Linear(64 * 50 * 50, 512)
19
+ self.fc2 = nn.Linear(512, 2)
20
+ self.relu = nn.ReLU()
21
+
22
+ def forward(self, x):
23
+ x = self.pool(self.relu(self.conv1(x)))
24
+ x = self.pool(self.relu(self.conv2(x)))
25
+ x = self.pool(self.relu(self.conv3(x)))
26
+ x = x.view(-1, 64 * 50 * 50)
27
+ x = self.relu(self.fc1(x))
28
+ x = self.fc2(x)
29
+ return x
30
+
31
+ model = FarmNet() # Replace with your model and architecture
32
+ model.load_state_dict(torch.load('farmnet_model.pth'))
33
+ model.eval() # Set the model to evaluation mode
34
+
35
+ # Preprocess the image
36
+ transform = transforms.Compose([
37
+ transforms.Resize((400, 400)), # Adjust according to your model's input size
38
+ transforms.ToTensor(),
39
+ ])
40
+
41
+
42
+ # Print the prediction
43
+ classes = ['not farm', 'farm'] # Adjust according to your classes
44
+
45
+ #64.777466,-147.489792
46
+ def greet(latitude,longitude):
47
+ image_url = f"https://maps.googleapis.com/maps/api/staticmap?center={latitude},{longitude}&zoom=17&size=400x400&maptype=satellite&key={os.environ['GOOGLE_API_KEY']}"
48
+ response = requests.get(image_url)
49
+ img_data = response.content
50
+ pil_img = Image.open(io.BytesIO(img_data)).convert('RGB')
51
+ img = transform(pil_img)
52
+ img = img.unsqueeze(0) # Add batch dimension
53
+
54
+ # Make an inference
55
+ with torch.no_grad():
56
+ outputs = model(img)
57
+ _, predicted = torch.max(outputs, 1)
58
+
59
+ return gr.Image(pil_img), classes[predicted.item()]
60
+ iface = gr.Interface(fn=greet, inputs=["number","number"], outputs=["image","label"])
61
+ iface.launch()
62
 
 
 
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch
2
+ torchvision
3
+ PIL