Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- Procfile +1 -1
- app.py +94 -97
- requirements.txt +4 -2
Procfile
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
web: gunicorn app:app
|
|
|
|
| 1 |
+
web: gunicorn app:app -w 2 -k uvicorn.workers.UvicornWorker
|
app.py
CHANGED
|
@@ -1,108 +1,105 @@
|
|
| 1 |
-
from
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
import os
|
| 5 |
-
import
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
app =
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
"text-embedding-3-small":
|
| 16 |
-
"bge-
|
| 17 |
}
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
""
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
return auth_header.split("Bearer ")[1] == API_KEY
|
| 28 |
|
| 29 |
-
@app.
|
| 30 |
-
def create_embedding(
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
"message": f"Model {model_name} not found",
|
| 61 |
-
"type": "invalid_request_error",
|
| 62 |
-
"param": None,
|
| 63 |
-
"code": "model_not_found"
|
| 64 |
-
}
|
| 65 |
-
}), 404
|
| 66 |
-
|
| 67 |
-
# 处理输入(支持单文本或文本列表)
|
| 68 |
-
inputs = data["input"]
|
| 69 |
-
if isinstance(inputs, str):
|
| 70 |
-
inputs = [inputs]
|
| 71 |
-
|
| 72 |
-
# 计算嵌入向量
|
| 73 |
-
start_time = time.time()
|
| 74 |
-
embeddings = model.encode(inputs, normalize_embeddings=True)
|
| 75 |
-
processing_time = time.time() - start_time
|
| 76 |
-
|
| 77 |
-
# 准备响应数据
|
| 78 |
-
response_data = {
|
| 79 |
-
"object": "list",
|
| 80 |
-
"data": [
|
| 81 |
-
{
|
| 82 |
-
"object": "embedding",
|
| 83 |
-
"embedding": embedding.tolist(),
|
| 84 |
-
"index": i
|
| 85 |
-
} for i, embedding in enumerate(embeddings)
|
| 86 |
-
],
|
| 87 |
-
"model": model_name,
|
| 88 |
-
"usage": {
|
| 89 |
-
"prompt_tokens": sum(len(text.split()) for text in inputs), # 简单估算
|
| 90 |
-
"total_tokens": sum(len(text.split()) for text in inputs)
|
| 91 |
-
}
|
| 92 |
-
}
|
| 93 |
-
|
| 94 |
-
return jsonify(response_data)
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
return
|
| 100 |
-
"status": "healthy",
|
| 101 |
-
"model": model_name,
|
| 102 |
-
"supported_models": list(SUPPORTED_MODELS.keys())
|
| 103 |
-
})
|
| 104 |
|
| 105 |
-
if __name__ ==
|
| 106 |
-
|
| 107 |
-
|
| 108 |
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException, Depends
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
import os
|
| 5 |
+
import numpy as np
|
| 6 |
+
from sentence_transformers import SentenceTransformer
|
| 7 |
+
from typing import List, Optional
|
| 8 |
|
| 9 |
+
app = FastAPI()
|
| 10 |
|
| 11 |
+
# 允许跨域请求
|
| 12 |
+
app.add_middleware(
|
| 13 |
+
CORSMiddleware,
|
| 14 |
+
allow_origins=["*"],
|
| 15 |
+
allow_credentials=True,
|
| 16 |
+
allow_methods=["*"],
|
| 17 |
+
allow_headers=["*"],
|
| 18 |
+
)
|
| 19 |
|
| 20 |
+
# 模型映射:OpenAI模型名 → 开源模型名
|
| 21 |
+
MODEL_MAPPING = {
|
| 22 |
+
"text-embedding-3-small": "BAAI/bge-small-en-v1.5",
|
| 23 |
+
"text-embedding-3-large": "BAAI/bge-large-en-v1.5" # 新增大模型映射
|
| 24 |
}
|
| 25 |
|
| 26 |
+
# 加载模型(懒加载,首次请求时加载)
|
| 27 |
+
models = {}
|
| 28 |
+
|
| 29 |
+
def get_model(model_name: str):
|
| 30 |
+
if model_name not in models:
|
| 31 |
+
# 检查是否支持该模型
|
| 32 |
+
if model_name not in MODEL_MAPPING:
|
| 33 |
+
raise HTTPException(status_code=400, detail=f"不支持的模型: {model_name}")
|
| 34 |
+
# 加载模型
|
| 35 |
+
models[model_name] = SentenceTransformer(MODEL_MAPPING[model_name])
|
| 36 |
+
return models[model_name]
|
| 37 |
+
|
| 38 |
+
# 验证API密钥
|
| 39 |
+
def verify_api_key(authorization: Optional[str] = None):
|
| 40 |
+
if not authorization or not authorization.startswith("Bearer "):
|
| 41 |
+
raise HTTPException(status_code=401, detail="未提供有效的API密钥")
|
| 42 |
+
api_key = authorization[len("Bearer "):]
|
| 43 |
+
if api_key != os.getenv("API_KEY"):
|
| 44 |
+
raise HTTPException(status_code=401, detail="无效的API密钥")
|
| 45 |
+
return True
|
| 46 |
+
|
| 47 |
+
# 请求体模型(对齐OpenAI格式)
|
| 48 |
+
class EmbeddingRequest(BaseModel):
|
| 49 |
+
input: str or List[str]
|
| 50 |
+
model: str
|
| 51 |
+
encoding_format: Optional[str] = "float" # 仅支持float,忽略base64
|
| 52 |
+
|
| 53 |
+
# 响应体模型(对齐OpenAI格式)
|
| 54 |
+
class EmbeddingData(BaseModel):
|
| 55 |
+
object: str = "embedding"
|
| 56 |
+
embedding: List[float]
|
| 57 |
+
index: int
|
| 58 |
|
| 59 |
+
class EmbeddingResponse(BaseModel):
|
| 60 |
+
object: str = "list"
|
| 61 |
+
data: List[EmbeddingData]
|
| 62 |
+
model: str
|
| 63 |
+
usage: dict = {"prompt_tokens": 0, "total_tokens": 0}
|
|
|
|
| 64 |
|
| 65 |
+
@app.post("/v1/embeddings", response_model=EmbeddingResponse)
|
| 66 |
+
async def create_embedding(
|
| 67 |
+
request: EmbeddingRequest,
|
| 68 |
+
_: bool = Depends(verify_api_key)
|
| 69 |
+
):
|
| 70 |
+
try:
|
| 71 |
+
# 获取模型
|
| 72 |
+
model = get_model(request.model)
|
| 73 |
+
|
| 74 |
+
# 处理输入(支持单文本或文本列表)
|
| 75 |
+
inputs = [request.input] if isinstance(request.input, str) else request.input
|
| 76 |
+
|
| 77 |
+
# 计算嵌入
|
| 78 |
+
embeddings = model.encode(inputs, normalize_embeddings=True)
|
| 79 |
+
|
| 80 |
+
# 构建响应
|
| 81 |
+
data = [
|
| 82 |
+
EmbeddingData(embedding=embedding.tolist(), index=i)
|
| 83 |
+
for i, embedding in enumerate(embeddings)
|
| 84 |
+
]
|
| 85 |
+
|
| 86 |
+
# 估算token数(简单近似:每个单词约1 token)
|
| 87 |
+
prompt_tokens = sum(len(text.split()) for text in inputs)
|
| 88 |
+
|
| 89 |
+
return EmbeddingResponse(
|
| 90 |
+
data=data,
|
| 91 |
+
model=request.model,
|
| 92 |
+
usage={"prompt_tokens": prompt_tokens, "total_tokens": prompt_tokens}
|
| 93 |
+
)
|
| 94 |
+
except Exception as e:
|
| 95 |
+
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
+
# 健康检查接口
|
| 98 |
+
@app.get("/health")
|
| 99 |
+
async def health_check():
|
| 100 |
+
return {"status": "healthy", "models": list(MODEL_MAPPING.keys())}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
+
if __name__ == "__main__":
|
| 103 |
+
import uvicorn
|
| 104 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
| 105 |
|
requirements.txt
CHANGED
|
@@ -1,5 +1,7 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
| 2 |
sentence-transformers==2.7.0
|
| 3 |
torch==2.2.2
|
| 4 |
numpy==1.26.4
|
| 5 |
-
|
|
|
|
| 1 |
+
fastapi==0.110.0
|
| 2 |
+
uvicorn==0.29.0
|
| 3 |
+
gunicorn==21.2.0
|
| 4 |
sentence-transformers==2.7.0
|
| 5 |
torch==2.2.2
|
| 6 |
numpy==1.26.4
|
| 7 |
+
pydantic==2.6.4
|