fierce74 commited on
Commit
0c303ea
·
1 Parent(s): c844a5b

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -0
app.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # %% [code] {"execution":{"iopub.status.busy":"2023-07-31T16:51:35.137587Z","iopub.execute_input":"2023-07-31T16:51:35.137972Z","iopub.status.idle":"2023-07-31T16:51:49.983937Z","shell.execute_reply.started":"2023-07-31T16:51:35.137942Z","shell.execute_reply":"2023-07-31T16:51:49.982981Z"}}
2
+ # This Python 3 environment comes with many helpful analytics libraries installed
3
+ # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python
4
+ # For example, here's several helpful packages to load
5
+
6
+ !pip install gradio
7
+
8
+ import numpy as np # linear algebra
9
+ import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
10
+
11
+ # Input data files are available in the read-only "../input/" directory
12
+ # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory
13
+
14
+ import os
15
+ for dirname, _, filenames in os.walk('/kaggle/input'):
16
+ for filename in filenames:
17
+ print(os.path.join(dirname, filename))
18
+
19
+ # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All"
20
+ # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session
21
+
22
+ # %% [code] {"execution":{"iopub.status.busy":"2023-07-31T16:52:23.519405Z","iopub.execute_input":"2023-07-31T16:52:23.519821Z","iopub.status.idle":"2023-07-31T16:52:30.470389Z","shell.execute_reply.started":"2023-07-31T16:52:23.519792Z","shell.execute_reply":"2023-07-31T16:52:30.469705Z"}}
23
+ import gradio as gr
24
+ from fastai.vision.all import *
25
+ import skimage
26
+
27
+ learn = load_learner('/kaggle/input/bicycle-model/model.pkl')
28
+
29
+ # %% [code] {"execution":{"iopub.status.busy":"2023-07-31T16:52:36.499387Z","iopub.execute_input":"2023-07-31T16:52:36.499737Z","iopub.status.idle":"2023-07-31T16:52:36.506774Z","shell.execute_reply.started":"2023-07-31T16:52:36.499713Z","shell.execute_reply":"2023-07-31T16:52:36.505348Z"}}
30
+ labels = learn.dls.vocab
31
+
32
+ def predict(img):
33
+ img = PILImage.create(img)
34
+ pred, idx, probs = learn.predict(img)
35
+ return {labels[i]: float(probs[i]) for i in range(len(labels))}
36
+
37
+ # %% [code] {"execution":{"iopub.status.busy":"2023-07-31T17:01:15.166908Z","iopub.execute_input":"2023-07-31T17:01:15.168263Z","iopub.status.idle":"2023-07-31T17:01:25.050227Z","shell.execute_reply.started":"2023-07-31T17:01:15.168215Z","shell.execute_reply":"2023-07-31T17:01:25.049147Z"}}
38
+ examples = ['/kaggle/input/examples/street_bicycle.jpg',
39
+ '/kaggle/input/examples/street_image.jpg']
40
+
41
+ gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)),
42
+ title = "bicycle detector",
43
+ examples = examples,
44
+ interpretation = 'default',
45
+ enable_queue = True,
46
+ outputs = gr.outputs.Label(num_top_classes=3)).launch(share=True),