fhieni commited on
Commit
aa21111
1 Parent(s): 401a7a8

Upload 19 files

Browse files
Files changed (19) hide show
  1. G_150000.pth +3 -0
  2. LICENSE +21 -0
  3. README.md +58 -13
  4. app.py +135 -0
  5. attentions.py +303 -0
  6. commons.py +161 -0
  7. data_utils.py +403 -0
  8. inference.ipynb +200 -0
  9. inference.py +64 -0
  10. losses.py +61 -0
  11. mel_processing.py +112 -0
  12. models.py +527 -0
  13. modules.py +390 -0
  14. preprocess.py +25 -0
  15. requirements.txt +10 -0
  16. train.py +290 -0
  17. train_ms.py +294 -0
  18. transforms.py +193 -0
  19. utils.py +258 -0
G_150000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1865abf9df3ae74d45952b07a07628d245b92dd951bd9faf38d04759253f42bb
3
+ size 477099803
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2021 Jaehyeon Kim
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md CHANGED
@@ -1,13 +1,58 @@
1
- ---
2
- title: Vietnamese VITS TTS
3
- emoji: 🐠
4
- colorFrom: purple
5
- colorTo: gray
6
- sdk: gradio
7
- sdk_version: 4.1.2
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
2
+
3
+ ### Jaehyeon Kim, Jungil Kong, and Juhee Son
4
+
5
+ In our recent [paper](https://arxiv.org/abs/2106.06103), we propose VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech.
6
+
7
+ Several recent end-to-end text-to-speech (TTS) models enabling single-stage training and parallel sampling have been proposed, but their sample quality does not match that of two-stage TTS systems. In this work, we present a parallel end-to-end TTS method that generates more natural sounding audio than current two-stage models. Our method adopts variational inference augmented with normalizing flows and an adversarial training process, which improves the expressive power of generative modeling. We also propose a stochastic duration predictor to synthesize speech with diverse rhythms from input text. With the uncertainty modeling over latent variables and the stochastic duration predictor, our method expresses the natural one-to-many relationship in which a text input can be spoken in multiple ways with different pitches and rhythms. A subjective human evaluation (mean opinion score, or MOS) on the LJ Speech, a single speaker dataset, shows that our method outperforms the best publicly available TTS systems and achieves a MOS comparable to ground truth.
8
+
9
+ Visit our [demo](https://jaywalnut310.github.io/vits-demo/index.html) for audio samples.
10
+
11
+ We also provide the [pretrained models](https://drive.google.com/drive/folders/1ksarh-cJf3F5eKJjLVWY0X1j1qsQqiS2?usp=sharing).
12
+
13
+ ** Update note: Thanks to [Rishikesh (ऋषिकेश)](https://github.com/jaywalnut310/vits/issues/1), our interactive TTS demo is now available on [Colab Notebook](https://colab.research.google.com/drive/1CO61pZizDj7en71NQG_aqqKdGaA_SaBf?usp=sharing).
14
+
15
+ <table style="width:100%">
16
+ <tr>
17
+ <th>VITS at training</th>
18
+ <th>VITS at inference</th>
19
+ </tr>
20
+ <tr>
21
+ <td><img src="resources/fig_1a.png" alt="VITS at training" height="400"></td>
22
+ <td><img src="resources/fig_1b.png" alt="VITS at inference" height="400"></td>
23
+ </tr>
24
+ </table>
25
+
26
+
27
+ ## Pre-requisites
28
+ 0. Python >= 3.6
29
+ 0. Clone this repository
30
+ 0. Install python requirements. Please refer [requirements.txt](requirements.txt)
31
+ 1. You may need to install espeak first: `apt-get install espeak`
32
+ 0. Download datasets
33
+ 1. Download and extract the LJ Speech dataset, then rename or create a link to the dataset folder: `ln -s /path/to/LJSpeech-1.1/wavs DUMMY1`
34
+ 1. For mult-speaker setting, download and extract the VCTK dataset, and downsample wav files to 22050 Hz. Then rename or create a link to the dataset folder: `ln -s /path/to/VCTK-Corpus/downsampled_wavs DUMMY2`
35
+ 0. Build Monotonic Alignment Search and run preprocessing if you use your own datasets.
36
+ ```sh
37
+ # Cython-version Monotonoic Alignment Search
38
+ cd monotonic_align
39
+ python setup.py build_ext --inplace
40
+
41
+ # Preprocessing (g2p) for your own datasets. Preprocessed phonemes for LJ Speech and VCTK have been already provided.
42
+ # python preprocess.py --text_index 1 --filelists filelists/ljs_audio_text_train_filelist.txt filelists/ljs_audio_text_val_filelist.txt filelists/ljs_audio_text_test_filelist.txt
43
+ # python preprocess.py --text_index 2 --filelists filelists/vctk_audio_sid_text_train_filelist.txt filelists/vctk_audio_sid_text_val_filelist.txt filelists/vctk_audio_sid_text_test_filelist.txt
44
+ ```
45
+
46
+
47
+ ## Training Exmaple
48
+ ```sh
49
+ # LJ Speech
50
+ python train.py -c configs/ljs_base.json -m ljs_base
51
+
52
+ # VCTK
53
+ python train_ms.py -c configs/vctk_base.json -m vctk_base
54
+ ```
55
+
56
+
57
+ ## Inference Example
58
+ See [inference.ipynb](inference.ipynb)
app.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import numpy as np
4
+ import sys
5
+ from vinorm import TTSnorm
6
+ from utils_audio import convert_to_wav
7
+
8
+ sys.path.append("vits")
9
+ import commons
10
+ import utils
11
+ from models import SynthesizerTrn
12
+ from text.symbols import symbols
13
+ from text import text_to_sequence
14
+ from scipy.io.wavfile import write
15
+ import logging
16
+
17
+ numba_logger = logging.getLogger("numba")
18
+ numba_logger.setLevel(logging.WARNING)
19
+
20
+
21
+ from resemblyzer import preprocess_wav, VoiceEncoder
22
+
23
+
24
+ device = "cpu"
25
+
26
+
27
+ def get_text(texts, hps):
28
+ text_norm_list = []
29
+ for text in texts.split(","):
30
+ chunk_strings = []
31
+ chunk_len = 30
32
+ for i in range(0, len(text.split()), chunk_len):
33
+ chunk = " ".join(text.split()[i : i + chunk_len])
34
+ chunk_strings.append(chunk)
35
+ for chunk_string in chunk_strings:
36
+ text_norm = text_to_sequence(chunk_string, hps.data.text_cleaners)
37
+ if hps.data.add_blank:
38
+ text_norm = commons.intersperse(text_norm, 0)
39
+ text_norm_list.append(torch.LongTensor(text_norm))
40
+ return text_norm_list
41
+
42
+
43
+ def get_speaker_embedding(path):
44
+ encoder = VoiceEncoder(device="cpu")
45
+ path = convert_to_wav(path)
46
+ wav = preprocess_wav(path)
47
+ embed = encoder.embed_utterance(wav)
48
+ return embed
49
+
50
+
51
+ class VoiceClone:
52
+ def __init__(self, checkpoint_path):
53
+ hps = utils.get_hparams_from_file("./vits/configs/vivos.json")
54
+ self.net_g = SynthesizerTrn(
55
+ len(symbols),
56
+ hps.data.filter_length // 2 + 1,
57
+ hps.train.segment_size // hps.data.hop_length,
58
+ n_speakers=hps.data.n_speakers,
59
+ **hps.model
60
+ ).to(device)
61
+ _ = self.net_g.eval()
62
+
63
+ _ = utils.load_checkpoint(checkpoint_path, self.net_g, None)
64
+
65
+ self.hps = hps
66
+
67
+ def infer(self, text, ref_audio):
68
+ text_norm = TTSnorm(text)
69
+ stn_tst_list = get_text(text_norm, self.hps)
70
+ with torch.no_grad():
71
+ audios = []
72
+ for stn_tst in stn_tst_list:
73
+ x_tst = stn_tst.to(device).unsqueeze(0)
74
+ x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
75
+
76
+ speaker_embedding = get_speaker_embedding(ref_audio)
77
+ speaker_embedding = (
78
+ torch.FloatTensor(torch.from_numpy(speaker_embedding))
79
+ .unsqueeze(0)
80
+ .to(device)
81
+ )
82
+
83
+ audio = self.net_g.infer(
84
+ x_tst,
85
+ x_tst_lengths,
86
+ speaker_embedding=speaker_embedding,
87
+ noise_scale=0.667,
88
+ noise_scale_w=0.8,
89
+ length_scale=1,
90
+ )
91
+
92
+ audio = audio[0][0, 0].data.cpu().float().numpy()
93
+ audios.append(audio)
94
+ print(audio.shape)
95
+
96
+ audios = np.concatenate(audios, axis=0)
97
+ write(ref_audio.replace(".wav", "_clone.wav"), 22050, audios)
98
+ return ref_audio.replace(".wav", "_clone.wav"), text_norm
99
+
100
+
101
+ # object = VoiceClone("vits/logs/vivos/G_7700000.pth")
102
+ object = VoiceClone("vits/logs/vivos/G_150000.pth")
103
+
104
+
105
+ def clonevoice(text: str, speaker_wav, file_upload, language: str):
106
+ speaker_source = ""
107
+ if speaker_wav is not None:
108
+ speaker_source = speaker_wav
109
+ elif file_upload is not None:
110
+ speaker_source = file_upload
111
+ else:
112
+ speaker_source = "vits/audio/sontung.wav"
113
+
114
+ print(speaker_source)
115
+
116
+ outfile, text_norm = object.infer(text, speaker_source)
117
+
118
+ return [outfile, text_norm]
119
+
120
+
121
+ inputs = [
122
+ gr.Textbox(
123
+ label="Input",
124
+ value="muốn ngồi ở một vị trí không ai ngồi được thì phải chịu cảm giác không ai chịu được",
125
+ max_lines=3,
126
+ ),
127
+ gr.Audio(label="Speaker Wav", source="microphone", type="filepath"),
128
+ gr.Audio(label="Speaker Wav", source="upload", type="filepath"),
129
+ gr.Radio(label="Language", choices=["Vietnamese"], value="en"),
130
+ ]
131
+ outputs = [gr.Audio(label="Output"), gr.TextArea()]
132
+
133
+ demo = gr.Interface(fn=clonevoice, inputs=inputs, outputs=outputs)
134
+
135
+ demo.launch(debug=True)
attentions.py ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ import commons
9
+ import modules
10
+ from modules import LayerNorm
11
+
12
+
13
+ class Encoder(nn.Module):
14
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
15
+ super().__init__()
16
+ self.hidden_channels = hidden_channels
17
+ self.filter_channels = filter_channels
18
+ self.n_heads = n_heads
19
+ self.n_layers = n_layers
20
+ self.kernel_size = kernel_size
21
+ self.p_dropout = p_dropout
22
+ self.window_size = window_size
23
+
24
+ self.drop = nn.Dropout(p_dropout)
25
+ self.attn_layers = nn.ModuleList()
26
+ self.norm_layers_1 = nn.ModuleList()
27
+ self.ffn_layers = nn.ModuleList()
28
+ self.norm_layers_2 = nn.ModuleList()
29
+ for i in range(self.n_layers):
30
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
31
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
32
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
33
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
34
+
35
+ def forward(self, x, x_mask):
36
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
37
+ x = x * x_mask
38
+ for i in range(self.n_layers):
39
+ y = self.attn_layers[i](x, x, attn_mask)
40
+ y = self.drop(y)
41
+ x = self.norm_layers_1[i](x + y)
42
+
43
+ y = self.ffn_layers[i](x, x_mask)
44
+ y = self.drop(y)
45
+ x = self.norm_layers_2[i](x + y)
46
+ x = x * x_mask
47
+ return x
48
+
49
+
50
+ class Decoder(nn.Module):
51
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
52
+ super().__init__()
53
+ self.hidden_channels = hidden_channels
54
+ self.filter_channels = filter_channels
55
+ self.n_heads = n_heads
56
+ self.n_layers = n_layers
57
+ self.kernel_size = kernel_size
58
+ self.p_dropout = p_dropout
59
+ self.proximal_bias = proximal_bias
60
+ self.proximal_init = proximal_init
61
+
62
+ self.drop = nn.Dropout(p_dropout)
63
+ self.self_attn_layers = nn.ModuleList()
64
+ self.norm_layers_0 = nn.ModuleList()
65
+ self.encdec_attn_layers = nn.ModuleList()
66
+ self.norm_layers_1 = nn.ModuleList()
67
+ self.ffn_layers = nn.ModuleList()
68
+ self.norm_layers_2 = nn.ModuleList()
69
+ for i in range(self.n_layers):
70
+ self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
71
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
72
+ self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
73
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
74
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
75
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
76
+
77
+ def forward(self, x, x_mask, h, h_mask):
78
+ """
79
+ x: decoder input
80
+ h: encoder output
81
+ """
82
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
83
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
84
+ x = x * x_mask
85
+ for i in range(self.n_layers):
86
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
87
+ y = self.drop(y)
88
+ x = self.norm_layers_0[i](x + y)
89
+
90
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
91
+ y = self.drop(y)
92
+ x = self.norm_layers_1[i](x + y)
93
+
94
+ y = self.ffn_layers[i](x, x_mask)
95
+ y = self.drop(y)
96
+ x = self.norm_layers_2[i](x + y)
97
+ x = x * x_mask
98
+ return x
99
+
100
+
101
+ class MultiHeadAttention(nn.Module):
102
+ def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
103
+ super().__init__()
104
+ assert channels % n_heads == 0
105
+
106
+ self.channels = channels
107
+ self.out_channels = out_channels
108
+ self.n_heads = n_heads
109
+ self.p_dropout = p_dropout
110
+ self.window_size = window_size
111
+ self.heads_share = heads_share
112
+ self.block_length = block_length
113
+ self.proximal_bias = proximal_bias
114
+ self.proximal_init = proximal_init
115
+ self.attn = None
116
+
117
+ self.k_channels = channels // n_heads
118
+ self.conv_q = nn.Conv1d(channels, channels, 1)
119
+ self.conv_k = nn.Conv1d(channels, channels, 1)
120
+ self.conv_v = nn.Conv1d(channels, channels, 1)
121
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
122
+ self.drop = nn.Dropout(p_dropout)
123
+
124
+ if window_size is not None:
125
+ n_heads_rel = 1 if heads_share else n_heads
126
+ rel_stddev = self.k_channels**-0.5
127
+ self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
128
+ self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
129
+
130
+ nn.init.xavier_uniform_(self.conv_q.weight)
131
+ nn.init.xavier_uniform_(self.conv_k.weight)
132
+ nn.init.xavier_uniform_(self.conv_v.weight)
133
+ if proximal_init:
134
+ with torch.no_grad():
135
+ self.conv_k.weight.copy_(self.conv_q.weight)
136
+ self.conv_k.bias.copy_(self.conv_q.bias)
137
+
138
+ def forward(self, x, c, attn_mask=None):
139
+ q = self.conv_q(x)
140
+ k = self.conv_k(c)
141
+ v = self.conv_v(c)
142
+
143
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
144
+
145
+ x = self.conv_o(x)
146
+ return x
147
+
148
+ def attention(self, query, key, value, mask=None):
149
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
150
+ b, d, t_s, t_t = (*key.size(), query.size(2))
151
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
152
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
153
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
154
+
155
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
156
+ if self.window_size is not None:
157
+ assert t_s == t_t, "Relative attention is only available for self-attention."
158
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
159
+ rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
160
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
161
+ scores = scores + scores_local
162
+ if self.proximal_bias:
163
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
164
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
165
+ if mask is not None:
166
+ scores = scores.masked_fill(mask == 0, -1e4)
167
+ if self.block_length is not None:
168
+ assert t_s == t_t, "Local attention is only available for self-attention."
169
+ block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
170
+ scores = scores.masked_fill(block_mask == 0, -1e4)
171
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
172
+ p_attn = self.drop(p_attn)
173
+ output = torch.matmul(p_attn, value)
174
+ if self.window_size is not None:
175
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
176
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
177
+ output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
178
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
179
+ return output, p_attn
180
+
181
+ def _matmul_with_relative_values(self, x, y):
182
+ """
183
+ x: [b, h, l, m]
184
+ y: [h or 1, m, d]
185
+ ret: [b, h, l, d]
186
+ """
187
+ ret = torch.matmul(x, y.unsqueeze(0))
188
+ return ret
189
+
190
+ def _matmul_with_relative_keys(self, x, y):
191
+ """
192
+ x: [b, h, l, d]
193
+ y: [h or 1, m, d]
194
+ ret: [b, h, l, m]
195
+ """
196
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
197
+ return ret
198
+
199
+ def _get_relative_embeddings(self, relative_embeddings, length):
200
+ max_relative_position = 2 * self.window_size + 1
201
+ # Pad first before slice to avoid using cond ops.
202
+ pad_length = max(length - (self.window_size + 1), 0)
203
+ slice_start_position = max((self.window_size + 1) - length, 0)
204
+ slice_end_position = slice_start_position + 2 * length - 1
205
+ if pad_length > 0:
206
+ padded_relative_embeddings = F.pad(
207
+ relative_embeddings,
208
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
209
+ else:
210
+ padded_relative_embeddings = relative_embeddings
211
+ used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
212
+ return used_relative_embeddings
213
+
214
+ def _relative_position_to_absolute_position(self, x):
215
+ """
216
+ x: [b, h, l, 2*l-1]
217
+ ret: [b, h, l, l]
218
+ """
219
+ batch, heads, length, _ = x.size()
220
+ # Concat columns of pad to shift from relative to absolute indexing.
221
+ x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
222
+
223
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
224
+ x_flat = x.view([batch, heads, length * 2 * length])
225
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
226
+
227
+ # Reshape and slice out the padded elements.
228
+ x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
229
+ return x_final
230
+
231
+ def _absolute_position_to_relative_position(self, x):
232
+ """
233
+ x: [b, h, l, l]
234
+ ret: [b, h, l, 2*l-1]
235
+ """
236
+ batch, heads, length, _ = x.size()
237
+ # padd along column
238
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
239
+ x_flat = x.view([batch, heads, length**2 + length*(length -1)])
240
+ # add 0's in the beginning that will skew the elements after reshape
241
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
242
+ x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
243
+ return x_final
244
+
245
+ def _attention_bias_proximal(self, length):
246
+ """Bias for self-attention to encourage attention to close positions.
247
+ Args:
248
+ length: an integer scalar.
249
+ Returns:
250
+ a Tensor with shape [1, 1, length, length]
251
+ """
252
+ r = torch.arange(length, dtype=torch.float32)
253
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
254
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
255
+
256
+
257
+ class FFN(nn.Module):
258
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
259
+ super().__init__()
260
+ self.in_channels = in_channels
261
+ self.out_channels = out_channels
262
+ self.filter_channels = filter_channels
263
+ self.kernel_size = kernel_size
264
+ self.p_dropout = p_dropout
265
+ self.activation = activation
266
+ self.causal = causal
267
+
268
+ if causal:
269
+ self.padding = self._causal_padding
270
+ else:
271
+ self.padding = self._same_padding
272
+
273
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
274
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
275
+ self.drop = nn.Dropout(p_dropout)
276
+
277
+ def forward(self, x, x_mask):
278
+ x = self.conv_1(self.padding(x * x_mask))
279
+ if self.activation == "gelu":
280
+ x = x * torch.sigmoid(1.702 * x)
281
+ else:
282
+ x = torch.relu(x)
283
+ x = self.drop(x)
284
+ x = self.conv_2(self.padding(x * x_mask))
285
+ return x * x_mask
286
+
287
+ def _causal_padding(self, x):
288
+ if self.kernel_size == 1:
289
+ return x
290
+ pad_l = self.kernel_size - 1
291
+ pad_r = 0
292
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
293
+ x = F.pad(x, commons.convert_pad_shape(padding))
294
+ return x
295
+
296
+ def _same_padding(self, x):
297
+ if self.kernel_size == 1:
298
+ return x
299
+ pad_l = (self.kernel_size - 1) // 2
300
+ pad_r = self.kernel_size // 2
301
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
302
+ x = F.pad(x, commons.convert_pad_shape(padding))
303
+ return x
commons.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+
8
+ def init_weights(m, mean=0.0, std=0.01):
9
+ classname = m.__class__.__name__
10
+ if classname.find("Conv") != -1:
11
+ m.weight.data.normal_(mean, std)
12
+
13
+
14
+ def get_padding(kernel_size, dilation=1):
15
+ return int((kernel_size*dilation - dilation)/2)
16
+
17
+
18
+ def convert_pad_shape(pad_shape):
19
+ l = pad_shape[::-1]
20
+ pad_shape = [item for sublist in l for item in sublist]
21
+ return pad_shape
22
+
23
+
24
+ def intersperse(lst, item):
25
+ result = [item] * (len(lst) * 2 + 1)
26
+ result[1::2] = lst
27
+ return result
28
+
29
+
30
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
31
+ """KL(P||Q)"""
32
+ kl = (logs_q - logs_p) - 0.5
33
+ kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
34
+ return kl
35
+
36
+
37
+ def rand_gumbel(shape):
38
+ """Sample from the Gumbel distribution, protect from overflows."""
39
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
40
+ return -torch.log(-torch.log(uniform_samples))
41
+
42
+
43
+ def rand_gumbel_like(x):
44
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
45
+ return g
46
+
47
+
48
+ def slice_segments(x, ids_str, segment_size=4):
49
+ ret = torch.zeros_like(x[:, :, :segment_size])
50
+ for i in range(x.size(0)):
51
+ idx_str = ids_str[i]
52
+ idx_end = idx_str + segment_size
53
+ ret[i] = x[i, :, idx_str:idx_end]
54
+ return ret
55
+
56
+
57
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
58
+ b, d, t = x.size()
59
+ if x_lengths is None:
60
+ x_lengths = t
61
+ ids_str_max = x_lengths - segment_size + 1
62
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
63
+ ret = slice_segments(x, ids_str, segment_size)
64
+ return ret, ids_str
65
+
66
+
67
+ def get_timing_signal_1d(
68
+ length, channels, min_timescale=1.0, max_timescale=1.0e4):
69
+ position = torch.arange(length, dtype=torch.float)
70
+ num_timescales = channels // 2
71
+ log_timescale_increment = (
72
+ math.log(float(max_timescale) / float(min_timescale)) /
73
+ (num_timescales - 1))
74
+ inv_timescales = min_timescale * torch.exp(
75
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
76
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
77
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
78
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
79
+ signal = signal.view(1, channels, length)
80
+ return signal
81
+
82
+
83
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
84
+ b, channels, length = x.size()
85
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
86
+ return x + signal.to(dtype=x.dtype, device=x.device)
87
+
88
+
89
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
90
+ b, channels, length = x.size()
91
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
92
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
93
+
94
+
95
+ def subsequent_mask(length):
96
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
97
+ return mask
98
+
99
+
100
+ @torch.jit.script
101
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
102
+ n_channels_int = n_channels[0]
103
+ in_act = input_a + input_b
104
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
105
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
106
+ acts = t_act * s_act
107
+ return acts
108
+
109
+
110
+ def convert_pad_shape(pad_shape):
111
+ l = pad_shape[::-1]
112
+ pad_shape = [item for sublist in l for item in sublist]
113
+ return pad_shape
114
+
115
+
116
+ def shift_1d(x):
117
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
118
+ return x
119
+
120
+
121
+ def sequence_mask(length, max_length=None):
122
+ if max_length is None:
123
+ max_length = length.max()
124
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
125
+ return x.unsqueeze(0) < length.unsqueeze(1)
126
+
127
+
128
+ def generate_path(duration, mask):
129
+ """
130
+ duration: [b, 1, t_x]
131
+ mask: [b, 1, t_y, t_x]
132
+ """
133
+ device = duration.device
134
+
135
+ b, _, t_y, t_x = mask.shape
136
+ cum_duration = torch.cumsum(duration, -1)
137
+
138
+ cum_duration_flat = cum_duration.view(b * t_x)
139
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
140
+ path = path.view(b, t_x, t_y)
141
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
142
+ path = path.unsqueeze(1).transpose(2,3) * mask
143
+ return path
144
+
145
+
146
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
147
+ if isinstance(parameters, torch.Tensor):
148
+ parameters = [parameters]
149
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
150
+ norm_type = float(norm_type)
151
+ if clip_value is not None:
152
+ clip_value = float(clip_value)
153
+
154
+ total_norm = 0
155
+ for p in parameters:
156
+ param_norm = p.grad.data.norm(norm_type)
157
+ total_norm += param_norm.item() ** norm_type
158
+ if clip_value is not None:
159
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
160
+ total_norm = total_norm ** (1. / norm_type)
161
+ return total_norm
data_utils.py ADDED
@@ -0,0 +1,403 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import os
3
+ import random
4
+ import numpy as np
5
+ import torch
6
+ import torch.utils.data
7
+
8
+ import commons
9
+ from mel_processing import spectrogram_torch
10
+ from utils import load_wav_to_torch, load_filepaths_and_text
11
+ from text import text_to_sequence, cleaned_text_to_sequence
12
+
13
+
14
+ class TextAudioLoader(torch.utils.data.Dataset):
15
+ """
16
+ 1) loads audio, text pairs
17
+ 2) normalizes text and converts them to sequences of integers
18
+ 3) computes spectrograms from audio files.
19
+ """
20
+ def __init__(self, audiopaths_and_text, hparams):
21
+ self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
22
+ self.text_cleaners = hparams.text_cleaners
23
+ self.max_wav_value = hparams.max_wav_value
24
+ self.sampling_rate = hparams.sampling_rate
25
+ self.filter_length = hparams.filter_length
26
+ self.hop_length = hparams.hop_length
27
+ self.win_length = hparams.win_length
28
+ self.sampling_rate = hparams.sampling_rate
29
+
30
+ self.cleaned_text = getattr(hparams, "cleaned_text", False)
31
+
32
+ self.add_blank = hparams.add_blank
33
+ self.min_text_len = getattr(hparams, "min_text_len", 1)
34
+ self.max_text_len = getattr(hparams, "max_text_len", 190)
35
+
36
+ random.seed(1234)
37
+ random.shuffle(self.audiopaths_and_text)
38
+ self._filter()
39
+
40
+
41
+ def _filter(self):
42
+ """
43
+ Filter text & store spec lengths
44
+ """
45
+ # Store spectrogram lengths for Bucketing
46
+ # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
47
+ # spec_length = wav_length // hop_length
48
+
49
+ audiopaths_and_text_new = []
50
+ lengths = []
51
+ for audiopath, text in self.audiopaths_and_text:
52
+ if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
53
+ audiopaths_and_text_new.append([audiopath, text])
54
+
55
+ spec_filename = audiopath.replace(".wav", ".spec.pt")
56
+ if os.path.exists(spec_filename):
57
+ lengths.append(float(torch.load(spec_filename).size(1)) // 2)
58
+ else:
59
+ lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
60
+ self.audiopaths_and_text = audiopaths_and_text_new
61
+ self.lengths = lengths
62
+
63
+ def get_audio_text_pair(self, audiopath_and_text):
64
+ # separate filename and text
65
+ audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
66
+ text = self.get_text(text)
67
+ spec, wav = self.get_audio(audiopath)
68
+ return (text, spec, wav)
69
+
70
+ def get_audio(self, filename):
71
+ audio, sampling_rate = load_wav_to_torch(filename)
72
+ if sampling_rate != self.sampling_rate:
73
+ raise ValueError("{} {} SR doesn't match target {} SR".format(
74
+ sampling_rate, self.sampling_rate))
75
+ audio_norm = audio / self.max_wav_value
76
+ audio_norm = audio_norm.unsqueeze(0)
77
+ spec_filename = filename.replace(".wav", ".spec.pt")
78
+ if os.path.exists(spec_filename):
79
+ spec = torch.load(spec_filename)
80
+ else:
81
+ spec = spectrogram_torch(audio_norm, self.filter_length,
82
+ self.sampling_rate, self.hop_length, self.win_length,
83
+ center=False)
84
+ spec = torch.squeeze(spec, 0)
85
+ torch.save(spec, spec_filename)
86
+ return spec, audio_norm
87
+
88
+ def get_text(self, text):
89
+ if self.cleaned_text:
90
+ text_norm = cleaned_text_to_sequence(text)
91
+ else:
92
+ text_norm = text_to_sequence(text, self.text_cleaners)
93
+ if self.add_blank:
94
+ text_norm = commons.intersperse(text_norm, 0)
95
+ text_norm = torch.LongTensor(text_norm)
96
+ return text_norm
97
+
98
+ def __getitem__(self, index):
99
+ return self.get_audio_text_pair(self.audiopaths_and_text[index])
100
+
101
+ def __len__(self):
102
+ return len(self.audiopaths_and_text)
103
+
104
+
105
+ class TextAudioCollate():
106
+ """ Zero-pads model inputs and targets
107
+ """
108
+ def __init__(self, return_ids=False):
109
+ self.return_ids = return_ids
110
+
111
+ def __call__(self, batch):
112
+ """Collate's training batch from normalized text and aduio
113
+ PARAMS
114
+ ------
115
+ batch: [text_normalized, spec_normalized, wav_normalized]
116
+ """
117
+ # Right zero-pad all one-hot text sequences to max input length
118
+ _, ids_sorted_decreasing = torch.sort(
119
+ torch.LongTensor([x[1].size(1) for x in batch]),
120
+ dim=0, descending=True)
121
+
122
+ max_text_len = max([len(x[0]) for x in batch])
123
+ max_spec_len = max([x[1].size(1) for x in batch])
124
+ max_wav_len = max([x[2].size(1) for x in batch])
125
+
126
+ text_lengths = torch.LongTensor(len(batch))
127
+ spec_lengths = torch.LongTensor(len(batch))
128
+ wav_lengths = torch.LongTensor(len(batch))
129
+
130
+ text_padded = torch.LongTensor(len(batch), max_text_len)
131
+ spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
132
+ wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
133
+ text_padded.zero_()
134
+ spec_padded.zero_()
135
+ wav_padded.zero_()
136
+ for i in range(len(ids_sorted_decreasing)):
137
+ row = batch[ids_sorted_decreasing[i]]
138
+
139
+ text = row[0]
140
+ text_padded[i, :text.size(0)] = text
141
+ text_lengths[i] = text.size(0)
142
+
143
+ spec = row[1]
144
+ spec_padded[i, :, :spec.size(1)] = spec
145
+ spec_lengths[i] = spec.size(1)
146
+
147
+ wav = row[2]
148
+ wav_padded[i, :, :wav.size(1)] = wav
149
+ wav_lengths[i] = wav.size(1)
150
+
151
+ if self.return_ids:
152
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, ids_sorted_decreasing
153
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths
154
+
155
+
156
+ """Multi speaker version"""
157
+ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
158
+ """
159
+ 1) loads audio, speaker_id, text pairs
160
+ 2) normalizes text and converts them to sequences of integers
161
+ 3) computes spectrograms from audio files.
162
+ """
163
+ def __init__(self, audiopaths_sid_text, hparams):
164
+ self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
165
+ self.text_cleaners = hparams.text_cleaners
166
+ self.max_wav_value = hparams.max_wav_value
167
+ self.sampling_rate = hparams.sampling_rate
168
+ self.filter_length = hparams.filter_length
169
+ self.hop_length = hparams.hop_length
170
+ self.win_length = hparams.win_length
171
+ self.sampling_rate = hparams.sampling_rate
172
+
173
+ self.cleaned_text = getattr(hparams, "cleaned_text", False)
174
+
175
+ self.add_blank = hparams.add_blank
176
+ self.min_text_len = getattr(hparams, "min_text_len", 1)
177
+ self.max_text_len = getattr(hparams, "max_text_len", 190)
178
+
179
+ random.seed(1234)
180
+ random.shuffle(self.audiopaths_sid_text)
181
+ self._filter(hparams)
182
+
183
+ def get_speaker_embedding(self, path):
184
+ return torch.from_numpy(np.load(path))
185
+
186
+ def _filter(self, hparams):
187
+ """
188
+ Filter text & store spec lengths
189
+ """
190
+ # Store spectrogram lengths for Bucketing
191
+ # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
192
+ # spec_length = wav_length // hop_length
193
+
194
+ audiopaths_sid_text_new = []
195
+ lengths = []
196
+ for audiopath, sid, text in self.audiopaths_sid_text:
197
+ audiopath = hparams.wavs_dir + "/" + audiopath
198
+ sid = hparams.speaker_embedding_dir + "/" + sid
199
+ if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
200
+ audiopaths_sid_text_new.append([audiopath, sid, text])
201
+
202
+ spec_filename = audiopath.replace(".wav", ".spec.pt")
203
+ if os.path.exists(spec_filename):
204
+ lengths.append(float(torch.load(spec_filename).size(1)) // 2)
205
+ else:
206
+ lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
207
+ self.audiopaths_sid_text = audiopaths_sid_text_new
208
+ self.lengths = lengths
209
+
210
+ def get_audio_text_speaker_pair(self, audiopath_sid_text):
211
+ # separate filename, speaker_id and text
212
+ audiopath, embedding_file, text = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2]
213
+ text = self.get_text(text)
214
+ spec, wav = self.get_audio(audiopath)
215
+ speaker_embedding = self.get_speaker_embedding(embedding_file)
216
+ return (text, spec, wav, speaker_embedding)
217
+
218
+ def get_audio(self, filename):
219
+ audio, sampling_rate = load_wav_to_torch(filename)
220
+ if sampling_rate != self.sampling_rate:
221
+ raise ValueError("{} {} SR doesn't match target {} SR".format(
222
+ sampling_rate, self.sampling_rate))
223
+ audio_norm = audio / self.max_wav_value
224
+ audio_norm = audio_norm.unsqueeze(0)
225
+ spec_filename = filename.replace(".wav", ".spec.pt")
226
+ if os.path.exists(spec_filename):
227
+ spec = torch.load(spec_filename)
228
+ else:
229
+ spec = spectrogram_torch(audio_norm, self.filter_length,
230
+ self.sampling_rate, self.hop_length, self.win_length,
231
+ center=False)
232
+ spec = torch.squeeze(spec, 0)
233
+ torch.save(spec, spec_filename)
234
+ return spec, audio_norm
235
+
236
+ def get_text(self, text):
237
+ if self.cleaned_text:
238
+ text_norm = cleaned_text_to_sequence(text)
239
+ else:
240
+ text_norm = text_to_sequence(text, self.text_cleaners)
241
+ if self.add_blank:
242
+ text_norm = commons.intersperse(text_norm, 0)
243
+ text_norm = torch.LongTensor(text_norm)
244
+ return text_norm
245
+
246
+ def __getitem__(self, index):
247
+ return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
248
+
249
+ def __len__(self):
250
+ return len(self.audiopaths_sid_text)
251
+
252
+
253
+ class TextAudioSpeakerCollate():
254
+ """ Zero-pads model inputs and targets
255
+ """
256
+ def __init__(self, return_ids=False):
257
+ self.return_ids = return_ids
258
+
259
+ def __call__(self, batch):
260
+ """Collate's training batch from normalized text, audio and speaker identities
261
+ PARAMS
262
+ ------
263
+ batch: [text_normalized, spec_normalized, wav_normalized, sid]
264
+ """
265
+ # Right zero-pad all one-hot text sequences to max input length
266
+ _, ids_sorted_decreasing = torch.sort(
267
+ torch.LongTensor([x[1].size(1) for x in batch]),
268
+ dim=0, descending=True)
269
+
270
+ max_text_len = max([len(x[0]) for x in batch])
271
+ max_spec_len = max([x[1].size(1) for x in batch])
272
+ max_wav_len = max([x[2].size(1) for x in batch])
273
+
274
+ text_lengths = torch.LongTensor(len(batch))
275
+ spec_lengths = torch.LongTensor(len(batch))
276
+ wav_lengths = torch.LongTensor(len(batch))
277
+ sid = torch.FloatTensor(len(batch), 256)
278
+
279
+ text_padded = torch.LongTensor(len(batch), max_text_len)
280
+ spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
281
+ wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
282
+ text_padded.zero_()
283
+ spec_padded.zero_()
284
+ wav_padded.zero_()
285
+ for i in range(len(ids_sorted_decreasing)):
286
+ row = batch[ids_sorted_decreasing[i]]
287
+
288
+ text = row[0]
289
+ text_padded[i, :text.size(0)] = text
290
+ text_lengths[i] = text.size(0)
291
+
292
+ spec = row[1]
293
+ spec_padded[i, :, :spec.size(1)] = spec
294
+ spec_lengths[i] = spec.size(1)
295
+
296
+ wav = row[2]
297
+ wav_padded[i, :, :wav.size(1)] = wav
298
+ wav_lengths[i] = wav.size(1)
299
+
300
+ sid[i] = row[3]
301
+
302
+ if self.return_ids:
303
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing
304
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid
305
+
306
+
307
+ class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
308
+ """
309
+ Maintain similar input lengths in a batch.
310
+ Length groups are specified by boundaries.
311
+ Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
312
+
313
+ It removes samples which are not included in the boundaries.
314
+ Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
315
+ """
316
+ def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
317
+ super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
318
+ self.lengths = dataset.lengths
319
+ self.batch_size = batch_size
320
+ self.boundaries = boundaries
321
+
322
+ self.buckets, self.num_samples_per_bucket = self._create_buckets()
323
+ self.total_size = sum(self.num_samples_per_bucket)
324
+ self.num_samples = self.total_size // self.num_replicas
325
+
326
+ def _create_buckets(self):
327
+ buckets = [[] for _ in range(len(self.boundaries) - 1)]
328
+ for i in range(len(self.lengths)):
329
+ length = self.lengths[i]
330
+ idx_bucket = self._bisect(length)
331
+ if idx_bucket != -1:
332
+ buckets[idx_bucket].append(i)
333
+
334
+ for i in range(len(buckets) - 1, 0, -1):
335
+ if len(buckets[i]) == 0:
336
+ buckets.pop(i)
337
+ self.boundaries.pop(i+1)
338
+
339
+ num_samples_per_bucket = []
340
+ for i in range(len(buckets)):
341
+ len_bucket = len(buckets[i])
342
+ total_batch_size = self.num_replicas * self.batch_size
343
+ rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
344
+ num_samples_per_bucket.append(len_bucket + rem)
345
+ return buckets, num_samples_per_bucket
346
+
347
+ def __iter__(self):
348
+ # deterministically shuffle based on epoch
349
+ g = torch.Generator()
350
+ g.manual_seed(self.epoch)
351
+
352
+ indices = []
353
+ if self.shuffle:
354
+ for bucket in self.buckets:
355
+ indices.append(torch.randperm(len(bucket), generator=g).tolist())
356
+ else:
357
+ for bucket in self.buckets:
358
+ indices.append(list(range(len(bucket))))
359
+
360
+ batches = []
361
+ for i in range(len(self.buckets)):
362
+ bucket = self.buckets[i]
363
+ len_bucket = len(bucket)
364
+ ids_bucket = indices[i]
365
+ num_samples_bucket = self.num_samples_per_bucket[i]
366
+
367
+ # add extra samples to make it evenly divisible
368
+ rem = num_samples_bucket - len_bucket
369
+ ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
370
+
371
+ # subsample
372
+ ids_bucket = ids_bucket[self.rank::self.num_replicas]
373
+
374
+ # batching
375
+ for j in range(len(ids_bucket) // self.batch_size):
376
+ batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]]
377
+ batches.append(batch)
378
+
379
+ if self.shuffle:
380
+ batch_ids = torch.randperm(len(batches), generator=g).tolist()
381
+ batches = [batches[i] for i in batch_ids]
382
+ self.batches = batches
383
+
384
+ assert len(self.batches) * self.batch_size == self.num_samples
385
+ return iter(self.batches)
386
+
387
+ def _bisect(self, x, lo=0, hi=None):
388
+ if hi is None:
389
+ hi = len(self.boundaries) - 1
390
+
391
+ if hi > lo:
392
+ mid = (hi + lo) // 2
393
+ if self.boundaries[mid] < x and x <= self.boundaries[mid+1]:
394
+ return mid
395
+ elif x <= self.boundaries[mid]:
396
+ return self._bisect(x, lo, mid)
397
+ else:
398
+ return self._bisect(x, mid + 1, hi)
399
+ else:
400
+ return -1
401
+
402
+ def __len__(self):
403
+ return self.num_samples // self.batch_size
inference.ipynb ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "%matplotlib inline\n",
10
+ "import matplotlib.pyplot as plt\n",
11
+ "import IPython.display as ipd\n",
12
+ "\n",
13
+ "import os\n",
14
+ "import json\n",
15
+ "import math\n",
16
+ "import torch\n",
17
+ "from torch import nn\n",
18
+ "from torch.nn import functional as F\n",
19
+ "from torch.utils.data import DataLoader\n",
20
+ "\n",
21
+ "import commons\n",
22
+ "import utils\n",
23
+ "from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate\n",
24
+ "from models import SynthesizerTrn\n",
25
+ "from text.symbols import symbols\n",
26
+ "from text import text_to_sequence\n",
27
+ "\n",
28
+ "from scipy.io.wavfile import write\n",
29
+ "\n",
30
+ "\n",
31
+ "def get_text(text, hps):\n",
32
+ " text_norm = text_to_sequence(text, hps.data.text_cleaners)\n",
33
+ " if hps.data.add_blank:\n",
34
+ " text_norm = commons.intersperse(text_norm, 0)\n",
35
+ " text_norm = torch.LongTensor(text_norm)\n",
36
+ " return text_norm"
37
+ ]
38
+ },
39
+ {
40
+ "cell_type": "markdown",
41
+ "metadata": {},
42
+ "source": [
43
+ "## LJ Speech"
44
+ ]
45
+ },
46
+ {
47
+ "cell_type": "code",
48
+ "execution_count": null,
49
+ "metadata": {},
50
+ "outputs": [],
51
+ "source": [
52
+ "hps = utils.get_hparams_from_file(\"./configs/ljs_base.json\")"
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "code",
57
+ "execution_count": null,
58
+ "metadata": {},
59
+ "outputs": [],
60
+ "source": [
61
+ "net_g = SynthesizerTrn(\n",
62
+ " len(symbols),\n",
63
+ " hps.data.filter_length // 2 + 1,\n",
64
+ " hps.train.segment_size // hps.data.hop_length,\n",
65
+ " **hps.model).cuda()\n",
66
+ "_ = net_g.eval()\n",
67
+ "\n",
68
+ "_ = utils.load_checkpoint(\"/path/to/pretrained_ljs.pth\", net_g, None)"
69
+ ]
70
+ },
71
+ {
72
+ "cell_type": "code",
73
+ "execution_count": null,
74
+ "metadata": {},
75
+ "outputs": [],
76
+ "source": [
77
+ "stn_tst = get_text(\"VITS is Awesome!\", hps)\n",
78
+ "with torch.no_grad():\n",
79
+ " x_tst = stn_tst.cuda().unsqueeze(0)\n",
80
+ " x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n",
81
+ " audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()\n",
82
+ "ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))"
83
+ ]
84
+ },
85
+ {
86
+ "cell_type": "markdown",
87
+ "metadata": {},
88
+ "source": [
89
+ "## VCTK"
90
+ ]
91
+ },
92
+ {
93
+ "cell_type": "code",
94
+ "execution_count": null,
95
+ "metadata": {},
96
+ "outputs": [],
97
+ "source": [
98
+ "hps = utils.get_hparams_from_file(\"./configs/vctk_base.json\")"
99
+ ]
100
+ },
101
+ {
102
+ "cell_type": "code",
103
+ "execution_count": null,
104
+ "metadata": {},
105
+ "outputs": [],
106
+ "source": [
107
+ "net_g = SynthesizerTrn(\n",
108
+ " len(symbols),\n",
109
+ " hps.data.filter_length // 2 + 1,\n",
110
+ " hps.train.segment_size // hps.data.hop_length,\n",
111
+ " n_speakers=hps.data.n_speakers,\n",
112
+ " **hps.model).cuda()\n",
113
+ "_ = net_g.eval()\n",
114
+ "\n",
115
+ "_ = utils.load_checkpoint(\"/path/to/pretrained_vctk.pth\", net_g, None)"
116
+ ]
117
+ },
118
+ {
119
+ "cell_type": "code",
120
+ "execution_count": null,
121
+ "metadata": {},
122
+ "outputs": [],
123
+ "source": [
124
+ "stn_tst = get_text(\"VITS is Awesome!\", hps)\n",
125
+ "with torch.no_grad():\n",
126
+ " x_tst = stn_tst.cuda().unsqueeze(0)\n",
127
+ " x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n",
128
+ " sid = torch.LongTensor([4]).cuda()\n",
129
+ " audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()\n",
130
+ "ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))"
131
+ ]
132
+ },
133
+ {
134
+ "cell_type": "markdown",
135
+ "metadata": {},
136
+ "source": [
137
+ "### Voice Conversion"
138
+ ]
139
+ },
140
+ {
141
+ "cell_type": "code",
142
+ "execution_count": null,
143
+ "metadata": {},
144
+ "outputs": [],
145
+ "source": [
146
+ "dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)\n",
147
+ "collate_fn = TextAudioSpeakerCollate()\n",
148
+ "loader = DataLoader(dataset, num_workers=8, shuffle=False,\n",
149
+ " batch_size=1, pin_memory=True,\n",
150
+ " drop_last=True, collate_fn=collate_fn)\n",
151
+ "data_list = list(loader)"
152
+ ]
153
+ },
154
+ {
155
+ "cell_type": "code",
156
+ "execution_count": null,
157
+ "metadata": {},
158
+ "outputs": [],
159
+ "source": [
160
+ "with torch.no_grad():\n",
161
+ " x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cuda() for x in data_list[0]]\n",
162
+ " sid_tgt1 = torch.LongTensor([1]).cuda()\n",
163
+ " sid_tgt2 = torch.LongTensor([2]).cuda()\n",
164
+ " sid_tgt3 = torch.LongTensor([4]).cuda()\n",
165
+ " audio1 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data.cpu().float().numpy()\n",
166
+ " audio2 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt2)[0][0,0].data.cpu().float().numpy()\n",
167
+ " audio3 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt3)[0][0,0].data.cpu().float().numpy()\n",
168
+ "print(\"Original SID: %d\" % sid_src.item())\n",
169
+ "ipd.display(ipd.Audio(y[0].cpu().numpy(), rate=hps.data.sampling_rate, normalize=False))\n",
170
+ "print(\"Converted SID: %d\" % sid_tgt1.item())\n",
171
+ "ipd.display(ipd.Audio(audio1, rate=hps.data.sampling_rate, normalize=False))\n",
172
+ "print(\"Converted SID: %d\" % sid_tgt2.item())\n",
173
+ "ipd.display(ipd.Audio(audio2, rate=hps.data.sampling_rate, normalize=False))\n",
174
+ "print(\"Converted SID: %d\" % sid_tgt3.item())\n",
175
+ "ipd.display(ipd.Audio(audio3, rate=hps.data.sampling_rate, normalize=False))"
176
+ ]
177
+ }
178
+ ],
179
+ "metadata": {
180
+ "kernelspec": {
181
+ "display_name": "Python 3",
182
+ "language": "python",
183
+ "name": "python3"
184
+ },
185
+ "language_info": {
186
+ "codemirror_mode": {
187
+ "name": "ipython",
188
+ "version": 3
189
+ },
190
+ "file_extension": ".py",
191
+ "mimetype": "text/x-python",
192
+ "name": "python",
193
+ "nbconvert_exporter": "python",
194
+ "pygments_lexer": "ipython3",
195
+ "version": "3.7.7"
196
+ }
197
+ },
198
+ "nbformat": 4,
199
+ "nbformat_minor": 4
200
+ }
inference.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ import sys
4
+ import commons
5
+ import utils
6
+ from models import SynthesizerTrn
7
+ from text.symbols import symbols
8
+ from text import text_to_sequence
9
+ from scipy.io.wavfile import write
10
+ import logging
11
+
12
+ numba_logger = logging.getLogger('numba')
13
+ numba_logger.setLevel(logging.WARNING)
14
+
15
+ sys.path.append("../")
16
+ from resemblyzer import preprocess_wav, VoiceEncoder
17
+
18
+
19
+ device = "cpu"
20
+
21
+ def get_text(text, hps):
22
+ text_norm = text_to_sequence(text, hps.data.text_cleaners)
23
+ if hps.data.add_blank:
24
+ text_norm = commons.intersperse(text_norm, 0)
25
+ text_norm = torch.LongTensor(text_norm)
26
+ return text_norm
27
+
28
+ def get_speaker_embedding(path):
29
+ encoder = VoiceEncoder(device='cpu')
30
+ wav = preprocess_wav(path)
31
+ embed = encoder.embed_utterance(wav)
32
+ return embed
33
+
34
+ class VoiceClone():
35
+ def __init__(self, checkpoint_path):
36
+ hps = utils.get_hparams_from_file("./configs/vivos.json")
37
+ self.net_g = SynthesizerTrn(
38
+ len(symbols),
39
+ hps.data.filter_length // 2 + 1,
40
+ hps.train.segment_size // hps.data.hop_length,
41
+ n_speakers=hps.data.n_speakers,
42
+ **hps.model).to(device)
43
+ _ = self.net_g.eval()
44
+
45
+ _ = utils.load_checkpoint(checkpoint_path, self.net_g, None)
46
+
47
+ self.hps = hps
48
+
49
+ def infer(self, text, ref_audio):
50
+ stn_tst = get_text(text, self.hps)
51
+ with torch.no_grad():
52
+ x_tst = stn_tst.to(device).unsqueeze(0)
53
+ x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
54
+
55
+ speaker_embedding = get_speaker_embedding(ref_audio)
56
+ speaker_embedding = torch.FloatTensor(torch.from_numpy(speaker_embedding)).unsqueeze(0).to(device)
57
+
58
+ audio = self.net_g.infer(x_tst, x_tst_lengths, speaker_embedding=speaker_embedding, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()
59
+
60
+ write(ref_audio.replace(".wav", "_clone.wav"), 22050, audio)
61
+
62
+ if __name__ == "__main__":
63
+ object = VoiceClone("logs/vivos/G_9000.pth")
64
+ object.infer("hai ba hai ba", "audio/sontung.wav")
losses.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import commons
5
+
6
+
7
+ def feature_loss(fmap_r, fmap_g):
8
+ loss = 0
9
+ for dr, dg in zip(fmap_r, fmap_g):
10
+ for rl, gl in zip(dr, dg):
11
+ rl = rl.float().detach()
12
+ gl = gl.float()
13
+ loss += torch.mean(torch.abs(rl - gl))
14
+
15
+ return loss * 2
16
+
17
+
18
+ def discriminator_loss(disc_real_outputs, disc_generated_outputs):
19
+ loss = 0
20
+ r_losses = []
21
+ g_losses = []
22
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
23
+ dr = dr.float()
24
+ dg = dg.float()
25
+ r_loss = torch.mean((1-dr)**2)
26
+ g_loss = torch.mean(dg**2)
27
+ loss += (r_loss + g_loss)
28
+ r_losses.append(r_loss.item())
29
+ g_losses.append(g_loss.item())
30
+
31
+ return loss, r_losses, g_losses
32
+
33
+
34
+ def generator_loss(disc_outputs):
35
+ loss = 0
36
+ gen_losses = []
37
+ for dg in disc_outputs:
38
+ dg = dg.float()
39
+ l = torch.mean((1-dg)**2)
40
+ gen_losses.append(l)
41
+ loss += l
42
+
43
+ return loss, gen_losses
44
+
45
+
46
+ def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
47
+ """
48
+ z_p, logs_q: [b, h, t_t]
49
+ m_p, logs_p: [b, h, t_t]
50
+ """
51
+ z_p = z_p.float()
52
+ logs_q = logs_q.float()
53
+ m_p = m_p.float()
54
+ logs_p = logs_p.float()
55
+ z_mask = z_mask.float()
56
+
57
+ kl = logs_p - logs_q - 0.5
58
+ kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
59
+ kl = torch.sum(kl * z_mask)
60
+ l = kl / torch.sum(z_mask)
61
+ return l
mel_processing.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ import random
4
+ import torch
5
+ from torch import nn
6
+ import torch.nn.functional as F
7
+ import torch.utils.data
8
+ import numpy as np
9
+ import librosa
10
+ import librosa.util as librosa_util
11
+ from librosa.util import normalize, pad_center, tiny
12
+ from scipy.signal import get_window
13
+ from scipy.io.wavfile import read
14
+ from librosa.filters import mel as librosa_mel_fn
15
+
16
+ MAX_WAV_VALUE = 32768.0
17
+
18
+
19
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
20
+ """
21
+ PARAMS
22
+ ------
23
+ C: compression factor
24
+ """
25
+ return torch.log(torch.clamp(x, min=clip_val) * C)
26
+
27
+
28
+ def dynamic_range_decompression_torch(x, C=1):
29
+ """
30
+ PARAMS
31
+ ------
32
+ C: compression factor used to compress
33
+ """
34
+ return torch.exp(x) / C
35
+
36
+
37
+ def spectral_normalize_torch(magnitudes):
38
+ output = dynamic_range_compression_torch(magnitudes)
39
+ return output
40
+
41
+
42
+ def spectral_de_normalize_torch(magnitudes):
43
+ output = dynamic_range_decompression_torch(magnitudes)
44
+ return output
45
+
46
+
47
+ mel_basis = {}
48
+ hann_window = {}
49
+
50
+
51
+ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
52
+ if torch.min(y) < -1.:
53
+ print('min value is ', torch.min(y))
54
+ if torch.max(y) > 1.:
55
+ print('max value is ', torch.max(y))
56
+
57
+ global hann_window
58
+ dtype_device = str(y.dtype) + '_' + str(y.device)
59
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
60
+ if wnsize_dtype_device not in hann_window:
61
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
62
+
63
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
64
+ y = y.squeeze(1)
65
+
66
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
67
+ center=center, pad_mode='reflect', normalized=False, onesided=True)
68
+
69
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
70
+ return spec
71
+
72
+
73
+ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
74
+ global mel_basis
75
+ dtype_device = str(spec.dtype) + '_' + str(spec.device)
76
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
77
+ if fmax_dtype_device not in mel_basis:
78
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
79
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
80
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
81
+ spec = spectral_normalize_torch(spec)
82
+ return spec
83
+
84
+
85
+ def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
86
+ if torch.min(y) < -1.:
87
+ print('min value is ', torch.min(y))
88
+ if torch.max(y) > 1.:
89
+ print('max value is ', torch.max(y))
90
+
91
+ global mel_basis, hann_window
92
+ dtype_device = str(y.dtype) + '_' + str(y.device)
93
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
94
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
95
+ if fmax_dtype_device not in mel_basis:
96
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
97
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
98
+ if wnsize_dtype_device not in hann_window:
99
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
100
+
101
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
102
+ y = y.squeeze(1)
103
+
104
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
105
+ center=center, pad_mode='reflect', normalized=False, onesided=True)
106
+
107
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
108
+
109
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
110
+ spec = spectral_normalize_torch(spec)
111
+
112
+ return spec
models.py ADDED
@@ -0,0 +1,527 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ import commons
8
+ import modules
9
+ import attentions
10
+ import monotonic_align
11
+
12
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
13
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
14
+ from commons import init_weights, get_padding
15
+
16
+
17
+ class StochasticDurationPredictor(nn.Module):
18
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
19
+ super().__init__()
20
+ filter_channels = in_channels # it needs to be removed from future version.
21
+ self.in_channels = in_channels
22
+ self.filter_channels = filter_channels
23
+ self.kernel_size = kernel_size
24
+ self.p_dropout = p_dropout
25
+ self.n_flows = n_flows
26
+ self.gin_channels = gin_channels
27
+
28
+ self.log_flow = modules.Log()
29
+ self.flows = nn.ModuleList()
30
+ self.flows.append(modules.ElementwiseAffine(2))
31
+ for i in range(n_flows):
32
+ self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
33
+ self.flows.append(modules.Flip())
34
+
35
+ self.post_pre = nn.Conv1d(1, filter_channels, 1)
36
+ self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
37
+ self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
38
+ self.post_flows = nn.ModuleList()
39
+ self.post_flows.append(modules.ElementwiseAffine(2))
40
+ for i in range(4):
41
+ self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
42
+ self.post_flows.append(modules.Flip())
43
+
44
+ self.pre = nn.Conv1d(in_channels, filter_channels, 1)
45
+ self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
46
+ self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
47
+ if gin_channels != 0:
48
+ self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
49
+
50
+ def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
51
+ x = torch.detach(x)
52
+ x = self.pre(x)
53
+ if g is not None:
54
+ g = torch.detach(g)
55
+ x = x + self.cond(g)
56
+ x = self.convs(x, x_mask)
57
+ x = self.proj(x) * x_mask
58
+
59
+ if not reverse:
60
+ flows = self.flows
61
+ assert w is not None
62
+
63
+ logdet_tot_q = 0
64
+ h_w = self.post_pre(w)
65
+ h_w = self.post_convs(h_w, x_mask)
66
+ h_w = self.post_proj(h_w) * x_mask
67
+ e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
68
+ z_q = e_q
69
+ for flow in self.post_flows:
70
+ z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
71
+ logdet_tot_q += logdet_q
72
+ z_u, z1 = torch.split(z_q, [1, 1], 1)
73
+ u = torch.sigmoid(z_u) * x_mask
74
+ z0 = (w - u) * x_mask
75
+ logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
76
+ logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
77
+
78
+ logdet_tot = 0
79
+ z0, logdet = self.log_flow(z0, x_mask)
80
+ logdet_tot += logdet
81
+ z = torch.cat([z0, z1], 1)
82
+ for flow in flows:
83
+ z, logdet = flow(z, x_mask, g=x, reverse=reverse)
84
+ logdet_tot = logdet_tot + logdet
85
+ nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
86
+ return nll + logq # [b]
87
+ else:
88
+ flows = list(reversed(self.flows))
89
+ flows = flows[:-2] + [flows[-1]] # remove a useless vflow
90
+ z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
91
+ for flow in flows:
92
+ z = flow(z, x_mask, g=x, reverse=reverse)
93
+ z0, z1 = torch.split(z, [1, 1], 1)
94
+ logw = z0
95
+ return logw
96
+
97
+
98
+ class DurationPredictor(nn.Module):
99
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
100
+ super().__init__()
101
+
102
+ self.in_channels = in_channels
103
+ self.filter_channels = filter_channels
104
+ self.kernel_size = kernel_size
105
+ self.p_dropout = p_dropout
106
+ self.gin_channels = gin_channels
107
+
108
+ self.drop = nn.Dropout(p_dropout)
109
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
110
+ self.norm_1 = modules.LayerNorm(filter_channels)
111
+ self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
112
+ self.norm_2 = modules.LayerNorm(filter_channels)
113
+ self.proj = nn.Conv1d(filter_channels, 1, 1)
114
+
115
+ if gin_channels != 0:
116
+ self.cond = nn.Conv1d(gin_channels, in_channels, 1)
117
+
118
+ def forward(self, x, x_mask, g=None):
119
+ x = torch.detach(x)
120
+ if g is not None:
121
+ g = torch.detach(g)
122
+ x = x + self.cond(g)
123
+ x = self.conv_1(x * x_mask)
124
+ x = torch.relu(x)
125
+ x = self.norm_1(x)
126
+ x = self.drop(x)
127
+ x = self.conv_2(x * x_mask)
128
+ x = torch.relu(x)
129
+ x = self.norm_2(x)
130
+ x = self.drop(x)
131
+ x = self.proj(x * x_mask)
132
+ return x * x_mask
133
+
134
+
135
+ class TextEncoder(nn.Module):
136
+ def __init__(self,
137
+ n_vocab,
138
+ out_channels,
139
+ hidden_channels,
140
+ filter_channels,
141
+ n_heads,
142
+ n_layers,
143
+ kernel_size,
144
+ p_dropout):
145
+ super().__init__()
146
+ self.n_vocab = n_vocab
147
+ self.out_channels = out_channels
148
+ self.hidden_channels = hidden_channels
149
+ self.filter_channels = filter_channels
150
+ self.n_heads = n_heads
151
+ self.n_layers = n_layers
152
+ self.kernel_size = kernel_size
153
+ self.p_dropout = p_dropout
154
+
155
+ self.emb = nn.Embedding(n_vocab, hidden_channels)
156
+ nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
157
+
158
+ self.encoder = attentions.Encoder(
159
+ hidden_channels,
160
+ filter_channels,
161
+ n_heads,
162
+ n_layers,
163
+ kernel_size,
164
+ p_dropout)
165
+ self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
166
+
167
+ def forward(self, x, x_lengths):
168
+ x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
169
+ x = torch.transpose(x, 1, -1) # [b, h, t]
170
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
171
+
172
+ x = self.encoder(x * x_mask, x_mask)
173
+ stats = self.proj(x) * x_mask
174
+
175
+ m, logs = torch.split(stats, self.out_channels, dim=1)
176
+ return x, m, logs, x_mask
177
+
178
+
179
+ class ResidualCouplingBlock(nn.Module):
180
+ def __init__(self,
181
+ channels,
182
+ hidden_channels,
183
+ kernel_size,
184
+ dilation_rate,
185
+ n_layers,
186
+ n_flows=4,
187
+ gin_channels=0):
188
+ super().__init__()
189
+ self.channels = channels
190
+ self.hidden_channels = hidden_channels
191
+ self.kernel_size = kernel_size
192
+ self.dilation_rate = dilation_rate
193
+ self.n_layers = n_layers
194
+ self.n_flows = n_flows
195
+ self.gin_channels = gin_channels
196
+
197
+ self.flows = nn.ModuleList()
198
+ for i in range(n_flows):
199
+ self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
200
+ self.flows.append(modules.Flip())
201
+
202
+ def forward(self, x, x_mask, g=None, reverse=False):
203
+ if not reverse:
204
+ for flow in self.flows:
205
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
206
+ else:
207
+ for flow in reversed(self.flows):
208
+ x = flow(x, x_mask, g=g, reverse=reverse)
209
+ return x
210
+
211
+
212
+ class PosteriorEncoder(nn.Module):
213
+ def __init__(self,
214
+ in_channels,
215
+ out_channels,
216
+ hidden_channels,
217
+ kernel_size,
218
+ dilation_rate,
219
+ n_layers,
220
+ gin_channels=0):
221
+ super().__init__()
222
+ self.in_channels = in_channels
223
+ self.out_channels = out_channels
224
+ self.hidden_channels = hidden_channels
225
+ self.kernel_size = kernel_size
226
+ self.dilation_rate = dilation_rate
227
+ self.n_layers = n_layers
228
+ self.gin_channels = gin_channels
229
+
230
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
231
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
232
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
233
+
234
+ def forward(self, x, x_lengths, g=None):
235
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
236
+ x = self.pre(x) * x_mask
237
+ x = self.enc(x, x_mask, g=g)
238
+ stats = self.proj(x) * x_mask
239
+ m, logs = torch.split(stats, self.out_channels, dim=1)
240
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
241
+ return z, m, logs, x_mask
242
+
243
+
244
+ class Generator(torch.nn.Module):
245
+ def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
246
+ super(Generator, self).__init__()
247
+ self.num_kernels = len(resblock_kernel_sizes)
248
+ self.num_upsamples = len(upsample_rates)
249
+ self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
250
+ resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
251
+
252
+ self.ups = nn.ModuleList()
253
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
254
+ self.ups.append(weight_norm(
255
+ ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
256
+ k, u, padding=(k-u)//2)))
257
+
258
+ self.resblocks = nn.ModuleList()
259
+ for i in range(len(self.ups)):
260
+ ch = upsample_initial_channel//(2**(i+1))
261
+ for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
262
+ self.resblocks.append(resblock(ch, k, d))
263
+
264
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
265
+ self.ups.apply(init_weights)
266
+
267
+ if gin_channels != 0:
268
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
269
+
270
+ def forward(self, x, g=None):
271
+ x = self.conv_pre(x)
272
+ if g is not None:
273
+ x = x + self.cond(g)
274
+
275
+ for i in range(self.num_upsamples):
276
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
277
+ x = self.ups[i](x)
278
+ xs = None
279
+ for j in range(self.num_kernels):
280
+ if xs is None:
281
+ xs = self.resblocks[i*self.num_kernels+j](x)
282
+ else:
283
+ xs += self.resblocks[i*self.num_kernels+j](x)
284
+ x = xs / self.num_kernels
285
+ x = F.leaky_relu(x)
286
+ x = self.conv_post(x)
287
+ x = torch.tanh(x)
288
+
289
+ return x
290
+
291
+ def remove_weight_norm(self):
292
+ print('Removing weight norm...')
293
+ for l in self.ups:
294
+ remove_weight_norm(l)
295
+ for l in self.resblocks:
296
+ l.remove_weight_norm()
297
+
298
+
299
+ class DiscriminatorP(torch.nn.Module):
300
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
301
+ super(DiscriminatorP, self).__init__()
302
+ self.period = period
303
+ self.use_spectral_norm = use_spectral_norm
304
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
305
+ self.convs = nn.ModuleList([
306
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
307
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
308
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
309
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
310
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
311
+ ])
312
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
313
+
314
+ def forward(self, x):
315
+ fmap = []
316
+
317
+ # 1d to 2d
318
+ b, c, t = x.shape
319
+ if t % self.period != 0: # pad first
320
+ n_pad = self.period - (t % self.period)
321
+ x = F.pad(x, (0, n_pad), "reflect")
322
+ t = t + n_pad
323
+ x = x.view(b, c, t // self.period, self.period)
324
+
325
+ for l in self.convs:
326
+ x = l(x)
327
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
328
+ fmap.append(x)
329
+ x = self.conv_post(x)
330
+ fmap.append(x)
331
+ x = torch.flatten(x, 1, -1)
332
+
333
+ return x, fmap
334
+
335
+
336
+ class DiscriminatorS(torch.nn.Module):
337
+ def __init__(self, use_spectral_norm=False):
338
+ super(DiscriminatorS, self).__init__()
339
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
340
+ self.convs = nn.ModuleList([
341
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
342
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
343
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
344
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
345
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
346
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
347
+ ])
348
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
349
+
350
+ def forward(self, x):
351
+ fmap = []
352
+
353
+ for l in self.convs:
354
+ x = l(x)
355
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
356
+ fmap.append(x)
357
+ x = self.conv_post(x)
358
+ fmap.append(x)
359
+ x = torch.flatten(x, 1, -1)
360
+
361
+ return x, fmap
362
+
363
+
364
+ class MultiPeriodDiscriminator(torch.nn.Module):
365
+ def __init__(self, use_spectral_norm=False):
366
+ super(MultiPeriodDiscriminator, self).__init__()
367
+ periods = [2,3,5,7,11]
368
+
369
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
370
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
371
+ self.discriminators = nn.ModuleList(discs)
372
+
373
+ def forward(self, y, y_hat):
374
+ y_d_rs = []
375
+ y_d_gs = []
376
+ fmap_rs = []
377
+ fmap_gs = []
378
+ for i, d in enumerate(self.discriminators):
379
+ y_d_r, fmap_r = d(y)
380
+ y_d_g, fmap_g = d(y_hat)
381
+ y_d_rs.append(y_d_r)
382
+ y_d_gs.append(y_d_g)
383
+ fmap_rs.append(fmap_r)
384
+ fmap_gs.append(fmap_g)
385
+
386
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
387
+
388
+
389
+
390
+ class SynthesizerTrn(nn.Module):
391
+ """
392
+ Synthesizer for Training
393
+ """
394
+
395
+ def __init__(self,
396
+ n_vocab,
397
+ spec_channels,
398
+ segment_size,
399
+ inter_channels,
400
+ hidden_channels,
401
+ filter_channels,
402
+ n_heads,
403
+ n_layers,
404
+ kernel_size,
405
+ p_dropout,
406
+ resblock,
407
+ resblock_kernel_sizes,
408
+ resblock_dilation_sizes,
409
+ upsample_rates,
410
+ upsample_initial_channel,
411
+ upsample_kernel_sizes,
412
+ n_speakers=0,
413
+ gin_channels=0,
414
+ use_sdp=True,
415
+ **kwargs):
416
+
417
+ super().__init__()
418
+ self.n_vocab = n_vocab
419
+ self.spec_channels = spec_channels
420
+ self.inter_channels = inter_channels
421
+ self.hidden_channels = hidden_channels
422
+ self.filter_channels = filter_channels
423
+ self.n_heads = n_heads
424
+ self.n_layers = n_layers
425
+ self.kernel_size = kernel_size
426
+ self.p_dropout = p_dropout
427
+ self.resblock = resblock
428
+ self.resblock_kernel_sizes = resblock_kernel_sizes
429
+ self.resblock_dilation_sizes = resblock_dilation_sizes
430
+ self.upsample_rates = upsample_rates
431
+ self.upsample_initial_channel = upsample_initial_channel
432
+ self.upsample_kernel_sizes = upsample_kernel_sizes
433
+ self.segment_size = segment_size
434
+ self.n_speakers = n_speakers
435
+ self.gin_channels = gin_channels
436
+
437
+ self.use_sdp = use_sdp
438
+
439
+ self.enc_p = TextEncoder(n_vocab,
440
+ inter_channels,
441
+ hidden_channels,
442
+ filter_channels,
443
+ n_heads,
444
+ n_layers,
445
+ kernel_size,
446
+ p_dropout)
447
+ self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
448
+ self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
449
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
450
+
451
+ if use_sdp:
452
+ self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
453
+ else:
454
+ self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
455
+
456
+ def forward(self, x, x_lengths, y, y_lengths, speaker_embedding):
457
+
458
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
459
+
460
+ g = speaker_embedding.unsqueeze(-1)
461
+
462
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
463
+ z_p = self.flow(z, y_mask, g=g)
464
+
465
+ with torch.no_grad():
466
+ # negative cross-entropy
467
+ s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
468
+ neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
469
+ neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
470
+ neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
471
+ neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
472
+ neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
473
+
474
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
475
+ attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
476
+
477
+ w = attn.sum(2)
478
+ if self.use_sdp:
479
+ l_length = self.dp(x, x_mask, w, g=g)
480
+ l_length = l_length / torch.sum(x_mask)
481
+ else:
482
+ logw_ = torch.log(w + 1e-6) * x_mask
483
+ logw = self.dp(x, x_mask, g=g)
484
+ l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging
485
+
486
+ # expand prior
487
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
488
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
489
+
490
+ z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
491
+ o = self.dec(z_slice, g=g)
492
+ return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
493
+
494
+ def infer(self, x, x_lengths, speaker_embedding, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
495
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
496
+
497
+ g = speaker_embedding.unsqueeze(-1)
498
+
499
+ if self.use_sdp:
500
+ logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
501
+ else:
502
+ logw = self.dp(x, x_mask, g=g)
503
+ w = torch.exp(logw) * x_mask * length_scale
504
+ w_ceil = torch.ceil(w)
505
+ y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
506
+ y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
507
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
508
+ attn = commons.generate_path(w_ceil, attn_mask)
509
+
510
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
511
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
512
+
513
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
514
+ z = self.flow(z_p, y_mask, g=g, reverse=True)
515
+ o = self.dec((z * y_mask)[:,:,:max_len], g=g)
516
+ return o, attn, y_mask, (z, z_p, m_p, logs_p)
517
+
518
+ def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
519
+ assert self.n_speakers > 0, "n_speakers have to be larger than 0."
520
+ g_src = self.emb_g(sid_src).unsqueeze(-1)
521
+ g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
522
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
523
+ z_p = self.flow(z, y_mask, g=g_src)
524
+ z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
525
+ o_hat = self.dec(z_hat * y_mask, g=g_tgt)
526
+ return o_hat, y_mask, (z, z_p, z_hat)
527
+
modules.py ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import scipy
5
+ import torch
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+
9
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10
+ from torch.nn.utils import weight_norm, remove_weight_norm
11
+
12
+ import commons
13
+ from commons import init_weights, get_padding
14
+ from transforms import piecewise_rational_quadratic_transform
15
+
16
+
17
+ LRELU_SLOPE = 0.1
18
+
19
+
20
+ class LayerNorm(nn.Module):
21
+ def __init__(self, channels, eps=1e-5):
22
+ super().__init__()
23
+ self.channels = channels
24
+ self.eps = eps
25
+
26
+ self.gamma = nn.Parameter(torch.ones(channels))
27
+ self.beta = nn.Parameter(torch.zeros(channels))
28
+
29
+ def forward(self, x):
30
+ x = x.transpose(1, -1)
31
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
32
+ return x.transpose(1, -1)
33
+
34
+
35
+ class ConvReluNorm(nn.Module):
36
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
37
+ super().__init__()
38
+ self.in_channels = in_channels
39
+ self.hidden_channels = hidden_channels
40
+ self.out_channels = out_channels
41
+ self.kernel_size = kernel_size
42
+ self.n_layers = n_layers
43
+ self.p_dropout = p_dropout
44
+ assert n_layers > 1, "Number of layers should be larger than 0."
45
+
46
+ self.conv_layers = nn.ModuleList()
47
+ self.norm_layers = nn.ModuleList()
48
+ self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
49
+ self.norm_layers.append(LayerNorm(hidden_channels))
50
+ self.relu_drop = nn.Sequential(
51
+ nn.ReLU(),
52
+ nn.Dropout(p_dropout))
53
+ for _ in range(n_layers-1):
54
+ self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
55
+ self.norm_layers.append(LayerNorm(hidden_channels))
56
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
57
+ self.proj.weight.data.zero_()
58
+ self.proj.bias.data.zero_()
59
+
60
+ def forward(self, x, x_mask):
61
+ x_org = x
62
+ for i in range(self.n_layers):
63
+ x = self.conv_layers[i](x * x_mask)
64
+ x = self.norm_layers[i](x)
65
+ x = self.relu_drop(x)
66
+ x = x_org + self.proj(x)
67
+ return x * x_mask
68
+
69
+
70
+ class DDSConv(nn.Module):
71
+ """
72
+ Dialted and Depth-Separable Convolution
73
+ """
74
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
75
+ super().__init__()
76
+ self.channels = channels
77
+ self.kernel_size = kernel_size
78
+ self.n_layers = n_layers
79
+ self.p_dropout = p_dropout
80
+
81
+ self.drop = nn.Dropout(p_dropout)
82
+ self.convs_sep = nn.ModuleList()
83
+ self.convs_1x1 = nn.ModuleList()
84
+ self.norms_1 = nn.ModuleList()
85
+ self.norms_2 = nn.ModuleList()
86
+ for i in range(n_layers):
87
+ dilation = kernel_size ** i
88
+ padding = (kernel_size * dilation - dilation) // 2
89
+ self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
90
+ groups=channels, dilation=dilation, padding=padding
91
+ ))
92
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
93
+ self.norms_1.append(LayerNorm(channels))
94
+ self.norms_2.append(LayerNorm(channels))
95
+
96
+ def forward(self, x, x_mask, g=None):
97
+ if g is not None:
98
+ x = x + g
99
+ for i in range(self.n_layers):
100
+ y = self.convs_sep[i](x * x_mask)
101
+ y = self.norms_1[i](y)
102
+ y = F.gelu(y)
103
+ y = self.convs_1x1[i](y)
104
+ y = self.norms_2[i](y)
105
+ y = F.gelu(y)
106
+ y = self.drop(y)
107
+ x = x + y
108
+ return x * x_mask
109
+
110
+
111
+ class WN(torch.nn.Module):
112
+ def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
113
+ super(WN, self).__init__()
114
+ assert(kernel_size % 2 == 1)
115
+ self.hidden_channels =hidden_channels
116
+ self.kernel_size = kernel_size,
117
+ self.dilation_rate = dilation_rate
118
+ self.n_layers = n_layers
119
+ self.gin_channels = gin_channels
120
+ self.p_dropout = p_dropout
121
+
122
+ self.in_layers = torch.nn.ModuleList()
123
+ self.res_skip_layers = torch.nn.ModuleList()
124
+ self.drop = nn.Dropout(p_dropout)
125
+
126
+ if gin_channels != 0:
127
+ cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
128
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
129
+
130
+ for i in range(n_layers):
131
+ dilation = dilation_rate ** i
132
+ padding = int((kernel_size * dilation - dilation) / 2)
133
+ in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
134
+ dilation=dilation, padding=padding)
135
+ in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
136
+ self.in_layers.append(in_layer)
137
+
138
+ # last one is not necessary
139
+ if i < n_layers - 1:
140
+ res_skip_channels = 2 * hidden_channels
141
+ else:
142
+ res_skip_channels = hidden_channels
143
+
144
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
145
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
146
+ self.res_skip_layers.append(res_skip_layer)
147
+
148
+ def forward(self, x, x_mask, g=None, **kwargs):
149
+ output = torch.zeros_like(x)
150
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
151
+
152
+ if g is not None:
153
+ g = self.cond_layer(g)
154
+
155
+ for i in range(self.n_layers):
156
+ x_in = self.in_layers[i](x)
157
+ if g is not None:
158
+ cond_offset = i * 2 * self.hidden_channels
159
+ g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
160
+ else:
161
+ g_l = torch.zeros_like(x_in)
162
+
163
+ acts = commons.fused_add_tanh_sigmoid_multiply(
164
+ x_in,
165
+ g_l,
166
+ n_channels_tensor)
167
+ acts = self.drop(acts)
168
+
169
+ res_skip_acts = self.res_skip_layers[i](acts)
170
+ if i < self.n_layers - 1:
171
+ res_acts = res_skip_acts[:,:self.hidden_channels,:]
172
+ x = (x + res_acts) * x_mask
173
+ output = output + res_skip_acts[:,self.hidden_channels:,:]
174
+ else:
175
+ output = output + res_skip_acts
176
+ return output * x_mask
177
+
178
+ def remove_weight_norm(self):
179
+ if self.gin_channels != 0:
180
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
181
+ for l in self.in_layers:
182
+ torch.nn.utils.remove_weight_norm(l)
183
+ for l in self.res_skip_layers:
184
+ torch.nn.utils.remove_weight_norm(l)
185
+
186
+
187
+ class ResBlock1(torch.nn.Module):
188
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
189
+ super(ResBlock1, self).__init__()
190
+ self.convs1 = nn.ModuleList([
191
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
192
+ padding=get_padding(kernel_size, dilation[0]))),
193
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
194
+ padding=get_padding(kernel_size, dilation[1]))),
195
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
196
+ padding=get_padding(kernel_size, dilation[2])))
197
+ ])
198
+ self.convs1.apply(init_weights)
199
+
200
+ self.convs2 = nn.ModuleList([
201
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
202
+ padding=get_padding(kernel_size, 1))),
203
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
204
+ padding=get_padding(kernel_size, 1))),
205
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
206
+ padding=get_padding(kernel_size, 1)))
207
+ ])
208
+ self.convs2.apply(init_weights)
209
+
210
+ def forward(self, x, x_mask=None):
211
+ for c1, c2 in zip(self.convs1, self.convs2):
212
+ xt = F.leaky_relu(x, LRELU_SLOPE)
213
+ if x_mask is not None:
214
+ xt = xt * x_mask
215
+ xt = c1(xt)
216
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
217
+ if x_mask is not None:
218
+ xt = xt * x_mask
219
+ xt = c2(xt)
220
+ x = xt + x
221
+ if x_mask is not None:
222
+ x = x * x_mask
223
+ return x
224
+
225
+ def remove_weight_norm(self):
226
+ for l in self.convs1:
227
+ remove_weight_norm(l)
228
+ for l in self.convs2:
229
+ remove_weight_norm(l)
230
+
231
+
232
+ class ResBlock2(torch.nn.Module):
233
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
234
+ super(ResBlock2, self).__init__()
235
+ self.convs = nn.ModuleList([
236
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
237
+ padding=get_padding(kernel_size, dilation[0]))),
238
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
239
+ padding=get_padding(kernel_size, dilation[1])))
240
+ ])
241
+ self.convs.apply(init_weights)
242
+
243
+ def forward(self, x, x_mask=None):
244
+ for c in self.convs:
245
+ xt = F.leaky_relu(x, LRELU_SLOPE)
246
+ if x_mask is not None:
247
+ xt = xt * x_mask
248
+ xt = c(xt)
249
+ x = xt + x
250
+ if x_mask is not None:
251
+ x = x * x_mask
252
+ return x
253
+
254
+ def remove_weight_norm(self):
255
+ for l in self.convs:
256
+ remove_weight_norm(l)
257
+
258
+
259
+ class Log(nn.Module):
260
+ def forward(self, x, x_mask, reverse=False, **kwargs):
261
+ if not reverse:
262
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
263
+ logdet = torch.sum(-y, [1, 2])
264
+ return y, logdet
265
+ else:
266
+ x = torch.exp(x) * x_mask
267
+ return x
268
+
269
+
270
+ class Flip(nn.Module):
271
+ def forward(self, x, *args, reverse=False, **kwargs):
272
+ x = torch.flip(x, [1])
273
+ if not reverse:
274
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
275
+ return x, logdet
276
+ else:
277
+ return x
278
+
279
+
280
+ class ElementwiseAffine(nn.Module):
281
+ def __init__(self, channels):
282
+ super().__init__()
283
+ self.channels = channels
284
+ self.m = nn.Parameter(torch.zeros(channels,1))
285
+ self.logs = nn.Parameter(torch.zeros(channels,1))
286
+
287
+ def forward(self, x, x_mask, reverse=False, **kwargs):
288
+ if not reverse:
289
+ y = self.m + torch.exp(self.logs) * x
290
+ y = y * x_mask
291
+ logdet = torch.sum(self.logs * x_mask, [1,2])
292
+ return y, logdet
293
+ else:
294
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
295
+ return x
296
+
297
+
298
+ class ResidualCouplingLayer(nn.Module):
299
+ def __init__(self,
300
+ channels,
301
+ hidden_channels,
302
+ kernel_size,
303
+ dilation_rate,
304
+ n_layers,
305
+ p_dropout=0,
306
+ gin_channels=0,
307
+ mean_only=False):
308
+ assert channels % 2 == 0, "channels should be divisible by 2"
309
+ super().__init__()
310
+ self.channels = channels
311
+ self.hidden_channels = hidden_channels
312
+ self.kernel_size = kernel_size
313
+ self.dilation_rate = dilation_rate
314
+ self.n_layers = n_layers
315
+ self.half_channels = channels // 2
316
+ self.mean_only = mean_only
317
+
318
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
319
+ self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
320
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
321
+ self.post.weight.data.zero_()
322
+ self.post.bias.data.zero_()
323
+
324
+ def forward(self, x, x_mask, g=None, reverse=False):
325
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
326
+ h = self.pre(x0) * x_mask
327
+ h = self.enc(h, x_mask, g=g)
328
+ stats = self.post(h) * x_mask
329
+ if not self.mean_only:
330
+ m, logs = torch.split(stats, [self.half_channels]*2, 1)
331
+ else:
332
+ m = stats
333
+ logs = torch.zeros_like(m)
334
+
335
+ if not reverse:
336
+ x1 = m + x1 * torch.exp(logs) * x_mask
337
+ x = torch.cat([x0, x1], 1)
338
+ logdet = torch.sum(logs, [1,2])
339
+ return x, logdet
340
+ else:
341
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
342
+ x = torch.cat([x0, x1], 1)
343
+ return x
344
+
345
+
346
+ class ConvFlow(nn.Module):
347
+ def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
348
+ super().__init__()
349
+ self.in_channels = in_channels
350
+ self.filter_channels = filter_channels
351
+ self.kernel_size = kernel_size
352
+ self.n_layers = n_layers
353
+ self.num_bins = num_bins
354
+ self.tail_bound = tail_bound
355
+ self.half_channels = in_channels // 2
356
+
357
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
358
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
359
+ self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
360
+ self.proj.weight.data.zero_()
361
+ self.proj.bias.data.zero_()
362
+
363
+ def forward(self, x, x_mask, g=None, reverse=False):
364
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
365
+ h = self.pre(x0)
366
+ h = self.convs(h, x_mask, g=g)
367
+ h = self.proj(h) * x_mask
368
+
369
+ b, c, t = x0.shape
370
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
371
+
372
+ unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
373
+ unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
374
+ unnormalized_derivatives = h[..., 2 * self.num_bins:]
375
+
376
+ x1, logabsdet = piecewise_rational_quadratic_transform(x1,
377
+ unnormalized_widths,
378
+ unnormalized_heights,
379
+ unnormalized_derivatives,
380
+ inverse=reverse,
381
+ tails='linear',
382
+ tail_bound=self.tail_bound
383
+ )
384
+
385
+ x = torch.cat([x0, x1], 1) * x_mask
386
+ logdet = torch.sum(logabsdet * x_mask, [1,2])
387
+ if not reverse:
388
+ return x, logdet
389
+ else:
390
+ return x
preprocess.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import text
3
+ from utils import load_filepaths_and_text
4
+
5
+ if __name__ == '__main__':
6
+ parser = argparse.ArgumentParser()
7
+ parser.add_argument("--out_extension", default="cleaned")
8
+ parser.add_argument("--text_index", default=1, type=int)
9
+ parser.add_argument("--filelists", nargs="+", default=["filelists/ljs_audio_text_val_filelist.txt", "filelists/ljs_audio_text_test_filelist.txt"])
10
+ parser.add_argument("--text_cleaners", nargs="+", default=["english_cleaners2"])
11
+
12
+ args = parser.parse_args()
13
+
14
+
15
+ for filelist in args.filelists:
16
+ print("START:", filelist)
17
+ filepaths_and_text = load_filepaths_and_text(filelist)
18
+ for i in range(len(filepaths_and_text)):
19
+ original_text = filepaths_and_text[i][args.text_index]
20
+ cleaned_text = text._clean_text(original_text, args.text_cleaners)
21
+ filepaths_and_text[i][args.text_index] = cleaned_text
22
+
23
+ new_filelist = filelist + "." + args.out_extension
24
+ with open(new_filelist, "w", encoding="utf-8") as f:
25
+ f.writelines(["|".join(x) + "\n" for x in filepaths_and_text])
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ Cython==0.29.21
2
+ librosa==0.8.0
3
+ matplotlib==3.3.1
4
+ numpy==1.18.5
5
+ phonemizer==2.2.1
6
+ scipy==1.5.2
7
+ tensorboard==2.3.0
8
+ torch==1.6.0
9
+ torchvision==0.7.0
10
+ Unidecode==1.1.1
train.py ADDED
@@ -0,0 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import argparse
4
+ import itertools
5
+ import math
6
+ import torch
7
+ from torch import nn, optim
8
+ from torch.nn import functional as F
9
+ from torch.utils.data import DataLoader
10
+ from torch.utils.tensorboard import SummaryWriter
11
+ import torch.multiprocessing as mp
12
+ import torch.distributed as dist
13
+ from torch.nn.parallel import DistributedDataParallel as DDP
14
+ from torch.cuda.amp import autocast, GradScaler
15
+
16
+ import commons
17
+ import utils
18
+ from data_utils import (
19
+ TextAudioLoader,
20
+ TextAudioCollate,
21
+ DistributedBucketSampler
22
+ )
23
+ from models import (
24
+ SynthesizerTrn,
25
+ MultiPeriodDiscriminator,
26
+ )
27
+ from losses import (
28
+ generator_loss,
29
+ discriminator_loss,
30
+ feature_loss,
31
+ kl_loss
32
+ )
33
+ from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
34
+ from text.symbols import symbols
35
+
36
+
37
+ torch.backends.cudnn.benchmark = True
38
+ global_step = 0
39
+
40
+
41
+ def main():
42
+ """Assume Single Node Multi GPUs Training Only"""
43
+ assert torch.cuda.is_available(), "CPU training is not allowed."
44
+
45
+ n_gpus = torch.cuda.device_count()
46
+ os.environ['MASTER_ADDR'] = 'localhost'
47
+ os.environ['MASTER_PORT'] = '80000'
48
+
49
+ hps = utils.get_hparams()
50
+ mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
51
+
52
+
53
+ def run(rank, n_gpus, hps):
54
+ global global_step
55
+ if rank == 0:
56
+ logger = utils.get_logger(hps.model_dir)
57
+ logger.info(hps)
58
+ utils.check_git_hash(hps.model_dir)
59
+ writer = SummaryWriter(log_dir=hps.model_dir)
60
+ writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
61
+
62
+ dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
63
+ torch.manual_seed(hps.train.seed)
64
+ torch.cuda.set_device(rank)
65
+
66
+ train_dataset = TextAudioLoader(hps.data.training_files, hps.data)
67
+ train_sampler = DistributedBucketSampler(
68
+ train_dataset,
69
+ hps.train.batch_size,
70
+ [32,300,400,500,600,700,800,900,1000],
71
+ num_replicas=n_gpus,
72
+ rank=rank,
73
+ shuffle=True)
74
+ collate_fn = TextAudioCollate()
75
+ train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
76
+ collate_fn=collate_fn, batch_sampler=train_sampler)
77
+ if rank == 0:
78
+ eval_dataset = TextAudioLoader(hps.data.validation_files, hps.data)
79
+ eval_loader = DataLoader(eval_dataset, num_workers=8, shuffle=False,
80
+ batch_size=hps.train.batch_size, pin_memory=True,
81
+ drop_last=False, collate_fn=collate_fn)
82
+
83
+ net_g = SynthesizerTrn(
84
+ len(symbols),
85
+ hps.data.filter_length // 2 + 1,
86
+ hps.train.segment_size // hps.data.hop_length,
87
+ **hps.model).cuda(rank)
88
+ net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
89
+ optim_g = torch.optim.AdamW(
90
+ net_g.parameters(),
91
+ hps.train.learning_rate,
92
+ betas=hps.train.betas,
93
+ eps=hps.train.eps)
94
+ optim_d = torch.optim.AdamW(
95
+ net_d.parameters(),
96
+ hps.train.learning_rate,
97
+ betas=hps.train.betas,
98
+ eps=hps.train.eps)
99
+ net_g = DDP(net_g, device_ids=[rank])
100
+ net_d = DDP(net_d, device_ids=[rank])
101
+
102
+ try:
103
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
104
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
105
+ global_step = (epoch_str - 1) * len(train_loader)
106
+ except:
107
+ epoch_str = 1
108
+ global_step = 0
109
+
110
+ scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
111
+ scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
112
+
113
+ scaler = GradScaler(enabled=hps.train.fp16_run)
114
+
115
+ for epoch in range(epoch_str, hps.train.epochs + 1):
116
+ if rank==0:
117
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
118
+ else:
119
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
120
+ scheduler_g.step()
121
+ scheduler_d.step()
122
+
123
+
124
+ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
125
+ net_g, net_d = nets
126
+ optim_g, optim_d = optims
127
+ scheduler_g, scheduler_d = schedulers
128
+ train_loader, eval_loader = loaders
129
+ if writers is not None:
130
+ writer, writer_eval = writers
131
+
132
+ train_loader.batch_sampler.set_epoch(epoch)
133
+ global global_step
134
+
135
+ net_g.train()
136
+ net_d.train()
137
+ for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths) in enumerate(train_loader):
138
+ x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
139
+ spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
140
+ y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
141
+
142
+ with autocast(enabled=hps.train.fp16_run):
143
+ y_hat, l_length, attn, ids_slice, x_mask, z_mask,\
144
+ (z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths)
145
+
146
+ mel = spec_to_mel_torch(
147
+ spec,
148
+ hps.data.filter_length,
149
+ hps.data.n_mel_channels,
150
+ hps.data.sampling_rate,
151
+ hps.data.mel_fmin,
152
+ hps.data.mel_fmax)
153
+ y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
154
+ y_hat_mel = mel_spectrogram_torch(
155
+ y_hat.squeeze(1),
156
+ hps.data.filter_length,
157
+ hps.data.n_mel_channels,
158
+ hps.data.sampling_rate,
159
+ hps.data.hop_length,
160
+ hps.data.win_length,
161
+ hps.data.mel_fmin,
162
+ hps.data.mel_fmax
163
+ )
164
+
165
+ y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
166
+
167
+ # Discriminator
168
+ y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
169
+ with autocast(enabled=False):
170
+ loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
171
+ loss_disc_all = loss_disc
172
+ optim_d.zero_grad()
173
+ scaler.scale(loss_disc_all).backward()
174
+ scaler.unscale_(optim_d)
175
+ grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
176
+ scaler.step(optim_d)
177
+
178
+ with autocast(enabled=hps.train.fp16_run):
179
+ # Generator
180
+ y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
181
+ with autocast(enabled=False):
182
+ loss_dur = torch.sum(l_length.float())
183
+ loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
184
+ loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
185
+
186
+ loss_fm = feature_loss(fmap_r, fmap_g)
187
+ loss_gen, losses_gen = generator_loss(y_d_hat_g)
188
+ loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
189
+ optim_g.zero_grad()
190
+ scaler.scale(loss_gen_all).backward()
191
+ scaler.unscale_(optim_g)
192
+ grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
193
+ scaler.step(optim_g)
194
+ scaler.update()
195
+
196
+ if rank==0:
197
+ if global_step % hps.train.log_interval == 0:
198
+ lr = optim_g.param_groups[0]['lr']
199
+ losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
200
+ logger.info('Train Epoch: {} [{:.0f}%]'.format(
201
+ epoch,
202
+ 100. * batch_idx / len(train_loader)))
203
+ logger.info([x.item() for x in losses] + [global_step, lr])
204
+
205
+ scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
206
+ scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl})
207
+
208
+ scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
209
+ scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
210
+ scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
211
+ image_dict = {
212
+ "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
213
+ "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
214
+ "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
215
+ "all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy())
216
+ }
217
+ utils.summarize(
218
+ writer=writer,
219
+ global_step=global_step,
220
+ images=image_dict,
221
+ scalars=scalar_dict)
222
+
223
+ if global_step % hps.train.eval_interval == 0:
224
+ evaluate(hps, net_g, eval_loader, writer_eval)
225
+ utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
226
+ utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
227
+ global_step += 1
228
+
229
+ if rank == 0:
230
+ logger.info('====> Epoch: {}'.format(epoch))
231
+
232
+
233
+ def evaluate(hps, generator, eval_loader, writer_eval):
234
+ generator.eval()
235
+ with torch.no_grad():
236
+ for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths) in enumerate(eval_loader):
237
+ x, x_lengths = x.cuda(0), x_lengths.cuda(0)
238
+ spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
239
+ y, y_lengths = y.cuda(0), y_lengths.cuda(0)
240
+
241
+ # remove else
242
+ x = x[:1]
243
+ x_lengths = x_lengths[:1]
244
+ spec = spec[:1]
245
+ spec_lengths = spec_lengths[:1]
246
+ y = y[:1]
247
+ y_lengths = y_lengths[:1]
248
+ break
249
+ y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, max_len=1000)
250
+ y_hat_lengths = mask.sum([1,2]).long() * hps.data.hop_length
251
+
252
+ mel = spec_to_mel_torch(
253
+ spec,
254
+ hps.data.filter_length,
255
+ hps.data.n_mel_channels,
256
+ hps.data.sampling_rate,
257
+ hps.data.mel_fmin,
258
+ hps.data.mel_fmax)
259
+ y_hat_mel = mel_spectrogram_torch(
260
+ y_hat.squeeze(1).float(),
261
+ hps.data.filter_length,
262
+ hps.data.n_mel_channels,
263
+ hps.data.sampling_rate,
264
+ hps.data.hop_length,
265
+ hps.data.win_length,
266
+ hps.data.mel_fmin,
267
+ hps.data.mel_fmax
268
+ )
269
+ image_dict = {
270
+ "gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
271
+ }
272
+ audio_dict = {
273
+ "gen/audio": y_hat[0,:,:y_hat_lengths[0]]
274
+ }
275
+ if global_step == 0:
276
+ image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
277
+ audio_dict.update({"gt/audio": y[0,:,:y_lengths[0]]})
278
+
279
+ utils.summarize(
280
+ writer=writer_eval,
281
+ global_step=global_step,
282
+ images=image_dict,
283
+ audios=audio_dict,
284
+ audio_sampling_rate=hps.data.sampling_rate
285
+ )
286
+ generator.train()
287
+
288
+
289
+ if __name__ == "__main__":
290
+ main()
train_ms.py ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import argparse
4
+ import itertools
5
+ import math
6
+ import torch
7
+ from torch import nn, optim
8
+ from torch.nn import functional as F
9
+ from torch.utils.data import DataLoader
10
+ from torch.utils.tensorboard import SummaryWriter
11
+ import torch.multiprocessing as mp
12
+ import torch.distributed as dist
13
+ from torch.nn.parallel import DistributedDataParallel as DDP
14
+ from torch.cuda.amp import autocast, GradScaler
15
+
16
+ import commons
17
+ import utils
18
+ from data_utils import (
19
+ TextAudioSpeakerLoader,
20
+ TextAudioSpeakerCollate,
21
+ DistributedBucketSampler
22
+ )
23
+ from models import (
24
+ SynthesizerTrn,
25
+ MultiPeriodDiscriminator,
26
+ )
27
+ from losses import (
28
+ generator_loss,
29
+ discriminator_loss,
30
+ feature_loss,
31
+ kl_loss
32
+ )
33
+ from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
34
+ from text.symbols import symbols
35
+
36
+
37
+ torch.backends.cudnn.benchmark = True
38
+ global_step = 0
39
+
40
+
41
+ def main():
42
+ """Assume Single Node Multi GPUs Training Only"""
43
+ assert torch.cuda.is_available(), "CPU training is not allowed."
44
+
45
+ n_gpus = torch.cuda.device_count()
46
+ os.environ['MASTER_ADDR'] = 'localhost'
47
+ os.environ['MASTER_PORT'] = '8009'
48
+
49
+ hps = utils.get_hparams()
50
+ mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
51
+
52
+
53
+ def run(rank, n_gpus, hps):
54
+ global global_step
55
+ if rank == 0:
56
+ logger = utils.get_logger(hps.model_dir)
57
+ logger.info(hps)
58
+ utils.check_git_hash(hps.model_dir)
59
+ writer = SummaryWriter(log_dir=hps.model_dir)
60
+ writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
61
+
62
+ dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
63
+ torch.manual_seed(hps.train.seed)
64
+ torch.cuda.set_device(rank)
65
+
66
+ train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
67
+ train_sampler = DistributedBucketSampler(
68
+ train_dataset,
69
+ hps.train.batch_size,
70
+ [32,300,400,500,600,700,800,900,1000],
71
+ num_replicas=n_gpus,
72
+ rank=rank,
73
+ shuffle=True)
74
+ collate_fn = TextAudioSpeakerCollate()
75
+ train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
76
+ collate_fn=collate_fn, batch_sampler=train_sampler)
77
+ if rank == 0:
78
+ eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
79
+ eval_loader = DataLoader(eval_dataset, num_workers=8, shuffle=False,
80
+ batch_size=hps.train.batch_size, pin_memory=True,
81
+ drop_last=False, collate_fn=collate_fn)
82
+
83
+ net_g = SynthesizerTrn(
84
+ len(symbols),
85
+ hps.data.filter_length // 2 + 1,
86
+ hps.train.segment_size // hps.data.hop_length,
87
+ n_speakers=hps.data.n_speakers,
88
+ **hps.model).cuda(rank)
89
+ net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
90
+ optim_g = torch.optim.AdamW(
91
+ net_g.parameters(),
92
+ hps.train.learning_rate,
93
+ betas=hps.train.betas,
94
+ eps=hps.train.eps)
95
+ optim_d = torch.optim.AdamW(
96
+ net_d.parameters(),
97
+ hps.train.learning_rate,
98
+ betas=hps.train.betas,
99
+ eps=hps.train.eps)
100
+ net_g = DDP(net_g, device_ids=[rank])
101
+ net_d = DDP(net_d, device_ids=[rank])
102
+
103
+ try:
104
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
105
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
106
+ global_step = (epoch_str - 1) * len(train_loader)
107
+ except:
108
+ epoch_str = 1
109
+ global_step = 0
110
+
111
+ scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
112
+ scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
113
+
114
+ scaler = GradScaler(enabled=hps.train.fp16_run)
115
+
116
+ for epoch in range(epoch_str, hps.train.epochs + 1):
117
+ if rank==0:
118
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
119
+ else:
120
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
121
+ scheduler_g.step()
122
+ scheduler_d.step()
123
+
124
+
125
+ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
126
+ net_g, net_d = nets
127
+ optim_g, optim_d = optims
128
+ scheduler_g, scheduler_d = schedulers
129
+ train_loader, eval_loader = loaders
130
+ if writers is not None:
131
+ writer, writer_eval = writers
132
+
133
+ train_loader.batch_sampler.set_epoch(epoch)
134
+ global global_step
135
+
136
+ net_g.train()
137
+ net_d.train()
138
+ for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speaker_embeddings) in enumerate(train_loader):
139
+ x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
140
+ spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
141
+ y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
142
+ speaker_embeddings = speaker_embeddings.cuda(rank, non_blocking=True)
143
+
144
+ with autocast(enabled=hps.train.fp16_run):
145
+ y_hat, l_length, attn, ids_slice, x_mask, z_mask,\
146
+ (z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths, speaker_embeddings)
147
+
148
+ mel = spec_to_mel_torch(
149
+ spec,
150
+ hps.data.filter_length,
151
+ hps.data.n_mel_channels,
152
+ hps.data.sampling_rate,
153
+ hps.data.mel_fmin,
154
+ hps.data.mel_fmax)
155
+ y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
156
+ y_hat_mel = mel_spectrogram_torch(
157
+ y_hat.squeeze(1),
158
+ hps.data.filter_length,
159
+ hps.data.n_mel_channels,
160
+ hps.data.sampling_rate,
161
+ hps.data.hop_length,
162
+ hps.data.win_length,
163
+ hps.data.mel_fmin,
164
+ hps.data.mel_fmax
165
+ )
166
+
167
+ y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
168
+
169
+ # Discriminator
170
+ y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
171
+ with autocast(enabled=False):
172
+ loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
173
+ loss_disc_all = loss_disc
174
+ optim_d.zero_grad()
175
+ scaler.scale(loss_disc_all).backward()
176
+ scaler.unscale_(optim_d)
177
+ grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
178
+ scaler.step(optim_d)
179
+
180
+ with autocast(enabled=hps.train.fp16_run):
181
+ # Generator
182
+ y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
183
+ with autocast(enabled=False):
184
+ loss_dur = torch.sum(l_length.float())
185
+ loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
186
+ loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
187
+
188
+ loss_fm = feature_loss(fmap_r, fmap_g)
189
+ loss_gen, losses_gen = generator_loss(y_d_hat_g)
190
+ loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
191
+ optim_g.zero_grad()
192
+ scaler.scale(loss_gen_all).backward()
193
+ scaler.unscale_(optim_g)
194
+ grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
195
+ scaler.step(optim_g)
196
+ scaler.update()
197
+
198
+ if rank==0:
199
+ if global_step % hps.train.log_interval == 0:
200
+ lr = optim_g.param_groups[0]['lr']
201
+ losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
202
+ logger.info('Train Epoch: {} [{:.0f}%]'.format(
203
+ epoch,
204
+ 100. * batch_idx / len(train_loader)))
205
+ logger.info([x.item() for x in losses] + [global_step, lr])
206
+
207
+ scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
208
+ scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl})
209
+
210
+ scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
211
+ scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
212
+ scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
213
+ image_dict = {
214
+ "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
215
+ "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
216
+ "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
217
+ "all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy())
218
+ }
219
+ utils.summarize(
220
+ writer=writer,
221
+ global_step=global_step,
222
+ images=image_dict,
223
+ scalars=scalar_dict)
224
+
225
+ if global_step % hps.train.eval_interval == 0:
226
+ evaluate(hps, net_g, eval_loader, writer_eval)
227
+ utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
228
+ utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
229
+ global_step += 1
230
+
231
+ if rank == 0:
232
+ logger.info('====> Epoch: {}'.format(epoch))
233
+
234
+
235
+ def evaluate(hps, generator, eval_loader, writer_eval):
236
+ generator.eval()
237
+ with torch.no_grad():
238
+ for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speaker_embeddings) in enumerate(eval_loader):
239
+ x, x_lengths = x.cuda(0), x_lengths.cuda(0)
240
+ spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
241
+ y, y_lengths = y.cuda(0), y_lengths.cuda(0)
242
+ speaker_embeddings = speaker_embeddings.cuda(0)
243
+
244
+ # remove else
245
+ x = x[:1]
246
+ x_lengths = x_lengths[:1]
247
+ spec = spec[:1]
248
+ spec_lengths = spec_lengths[:1]
249
+ y = y[:1]
250
+ y_lengths = y_lengths[:1]
251
+ speaker_embeddings = speaker_embeddings[:1]
252
+ break
253
+ y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, speaker_embeddings, max_len=1000)
254
+ y_hat_lengths = mask.sum([1,2]).long() * hps.data.hop_length
255
+
256
+ mel = spec_to_mel_torch(
257
+ spec,
258
+ hps.data.filter_length,
259
+ hps.data.n_mel_channels,
260
+ hps.data.sampling_rate,
261
+ hps.data.mel_fmin,
262
+ hps.data.mel_fmax)
263
+ y_hat_mel = mel_spectrogram_torch(
264
+ y_hat.squeeze(1).float(),
265
+ hps.data.filter_length,
266
+ hps.data.n_mel_channels,
267
+ hps.data.sampling_rate,
268
+ hps.data.hop_length,
269
+ hps.data.win_length,
270
+ hps.data.mel_fmin,
271
+ hps.data.mel_fmax
272
+ )
273
+ image_dict = {
274
+ "gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
275
+ }
276
+ audio_dict = {
277
+ "gen/audio": y_hat[0,:,:y_hat_lengths[0]]
278
+ }
279
+ if global_step == 0:
280
+ image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
281
+ audio_dict.update({"gt/audio": y[0,:,:y_lengths[0]]})
282
+
283
+ utils.summarize(
284
+ writer=writer_eval,
285
+ global_step=global_step,
286
+ images=image_dict,
287
+ audios=audio_dict,
288
+ audio_sampling_rate=hps.data.sampling_rate
289
+ )
290
+ generator.train()
291
+
292
+
293
+ if __name__ == "__main__":
294
+ main()
transforms.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import numpy as np
5
+
6
+
7
+ DEFAULT_MIN_BIN_WIDTH = 1e-3
8
+ DEFAULT_MIN_BIN_HEIGHT = 1e-3
9
+ DEFAULT_MIN_DERIVATIVE = 1e-3
10
+
11
+
12
+ def piecewise_rational_quadratic_transform(inputs,
13
+ unnormalized_widths,
14
+ unnormalized_heights,
15
+ unnormalized_derivatives,
16
+ inverse=False,
17
+ tails=None,
18
+ tail_bound=1.,
19
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
20
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
21
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
22
+
23
+ if tails is None:
24
+ spline_fn = rational_quadratic_spline
25
+ spline_kwargs = {}
26
+ else:
27
+ spline_fn = unconstrained_rational_quadratic_spline
28
+ spline_kwargs = {
29
+ 'tails': tails,
30
+ 'tail_bound': tail_bound
31
+ }
32
+
33
+ outputs, logabsdet = spline_fn(
34
+ inputs=inputs,
35
+ unnormalized_widths=unnormalized_widths,
36
+ unnormalized_heights=unnormalized_heights,
37
+ unnormalized_derivatives=unnormalized_derivatives,
38
+ inverse=inverse,
39
+ min_bin_width=min_bin_width,
40
+ min_bin_height=min_bin_height,
41
+ min_derivative=min_derivative,
42
+ **spline_kwargs
43
+ )
44
+ return outputs, logabsdet
45
+
46
+
47
+ def searchsorted(bin_locations, inputs, eps=1e-6):
48
+ bin_locations[..., -1] += eps
49
+ return torch.sum(
50
+ inputs[..., None] >= bin_locations,
51
+ dim=-1
52
+ ) - 1
53
+
54
+
55
+ def unconstrained_rational_quadratic_spline(inputs,
56
+ unnormalized_widths,
57
+ unnormalized_heights,
58
+ unnormalized_derivatives,
59
+ inverse=False,
60
+ tails='linear',
61
+ tail_bound=1.,
62
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
63
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
64
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
65
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
66
+ outside_interval_mask = ~inside_interval_mask
67
+
68
+ outputs = torch.zeros_like(inputs)
69
+ logabsdet = torch.zeros_like(inputs)
70
+
71
+ if tails == 'linear':
72
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
73
+ constant = np.log(np.exp(1 - min_derivative) - 1)
74
+ unnormalized_derivatives[..., 0] = constant
75
+ unnormalized_derivatives[..., -1] = constant
76
+
77
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
78
+ logabsdet[outside_interval_mask] = 0
79
+ else:
80
+ raise RuntimeError('{} tails are not implemented.'.format(tails))
81
+
82
+ outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
83
+ inputs=inputs[inside_interval_mask],
84
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
85
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
86
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
87
+ inverse=inverse,
88
+ left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
89
+ min_bin_width=min_bin_width,
90
+ min_bin_height=min_bin_height,
91
+ min_derivative=min_derivative
92
+ )
93
+
94
+ return outputs, logabsdet
95
+
96
+ def rational_quadratic_spline(inputs,
97
+ unnormalized_widths,
98
+ unnormalized_heights,
99
+ unnormalized_derivatives,
100
+ inverse=False,
101
+ left=0., right=1., bottom=0., top=1.,
102
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
103
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
104
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
105
+ if torch.min(inputs) < left or torch.max(inputs) > right:
106
+ raise ValueError('Input to a transform is not within its domain')
107
+
108
+ num_bins = unnormalized_widths.shape[-1]
109
+
110
+ if min_bin_width * num_bins > 1.0:
111
+ raise ValueError('Minimal bin width too large for the number of bins')
112
+ if min_bin_height * num_bins > 1.0:
113
+ raise ValueError('Minimal bin height too large for the number of bins')
114
+
115
+ widths = F.softmax(unnormalized_widths, dim=-1)
116
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
117
+ cumwidths = torch.cumsum(widths, dim=-1)
118
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
119
+ cumwidths = (right - left) * cumwidths + left
120
+ cumwidths[..., 0] = left
121
+ cumwidths[..., -1] = right
122
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
123
+
124
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
125
+
126
+ heights = F.softmax(unnormalized_heights, dim=-1)
127
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
128
+ cumheights = torch.cumsum(heights, dim=-1)
129
+ cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
130
+ cumheights = (top - bottom) * cumheights + bottom
131
+ cumheights[..., 0] = bottom
132
+ cumheights[..., -1] = top
133
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
134
+
135
+ if inverse:
136
+ bin_idx = searchsorted(cumheights, inputs)[..., None]
137
+ else:
138
+ bin_idx = searchsorted(cumwidths, inputs)[..., None]
139
+
140
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
141
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
142
+
143
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
144
+ delta = heights / widths
145
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
146
+
147
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
148
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
149
+
150
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
151
+
152
+ if inverse:
153
+ a = (((inputs - input_cumheights) * (input_derivatives
154
+ + input_derivatives_plus_one
155
+ - 2 * input_delta)
156
+ + input_heights * (input_delta - input_derivatives)))
157
+ b = (input_heights * input_derivatives
158
+ - (inputs - input_cumheights) * (input_derivatives
159
+ + input_derivatives_plus_one
160
+ - 2 * input_delta))
161
+ c = - input_delta * (inputs - input_cumheights)
162
+
163
+ discriminant = b.pow(2) - 4 * a * c
164
+ assert (discriminant >= 0).all()
165
+
166
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
167
+ outputs = root * input_bin_widths + input_cumwidths
168
+
169
+ theta_one_minus_theta = root * (1 - root)
170
+ denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
171
+ * theta_one_minus_theta)
172
+ derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
173
+ + 2 * input_delta * theta_one_minus_theta
174
+ + input_derivatives * (1 - root).pow(2))
175
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
176
+
177
+ return outputs, -logabsdet
178
+ else:
179
+ theta = (inputs - input_cumwidths) / input_bin_widths
180
+ theta_one_minus_theta = theta * (1 - theta)
181
+
182
+ numerator = input_heights * (input_delta * theta.pow(2)
183
+ + input_derivatives * theta_one_minus_theta)
184
+ denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
185
+ * theta_one_minus_theta)
186
+ outputs = input_cumheights + numerator / denominator
187
+
188
+ derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
189
+ + 2 * input_delta * theta_one_minus_theta
190
+ + input_derivatives * (1 - theta).pow(2))
191
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
192
+
193
+ return outputs, logabsdet
utils.py ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ import sys
4
+ import argparse
5
+ import logging
6
+ import json
7
+ import subprocess
8
+ import numpy as np
9
+ from scipy.io.wavfile import read
10
+ import torch
11
+
12
+ MATPLOTLIB_FLAG = False
13
+
14
+ logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
15
+ logger = logging
16
+
17
+
18
+ def load_checkpoint(checkpoint_path, model, optimizer=None):
19
+ assert os.path.isfile(checkpoint_path)
20
+ checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
21
+ iteration = checkpoint_dict['iteration']
22
+ learning_rate = checkpoint_dict['learning_rate']
23
+ if optimizer is not None:
24
+ optimizer.load_state_dict(checkpoint_dict['optimizer'])
25
+ saved_state_dict = checkpoint_dict['model']
26
+ if hasattr(model, 'module'):
27
+ state_dict = model.module.state_dict()
28
+ else:
29
+ state_dict = model.state_dict()
30
+ new_state_dict= {}
31
+ for k, v in state_dict.items():
32
+ try:
33
+ new_state_dict[k] = saved_state_dict[k]
34
+ except:
35
+ logger.info("%s is not in the checkpoint" % k)
36
+ new_state_dict[k] = v
37
+ if hasattr(model, 'module'):
38
+ model.module.load_state_dict(new_state_dict)
39
+ else:
40
+ model.load_state_dict(new_state_dict)
41
+ logger.info("Loaded checkpoint '{}' (iteration {})" .format(
42
+ checkpoint_path, iteration))
43
+ return model, optimizer, learning_rate, iteration
44
+
45
+
46
+ def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
47
+ logger.info("Saving model and optimizer state at iteration {} to {}".format(
48
+ iteration, checkpoint_path))
49
+ if hasattr(model, 'module'):
50
+ state_dict = model.module.state_dict()
51
+ else:
52
+ state_dict = model.state_dict()
53
+ torch.save({'model': state_dict,
54
+ 'iteration': iteration,
55
+ 'optimizer': optimizer.state_dict(),
56
+ 'learning_rate': learning_rate}, checkpoint_path)
57
+
58
+
59
+ def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
60
+ for k, v in scalars.items():
61
+ writer.add_scalar(k, v, global_step)
62
+ for k, v in histograms.items():
63
+ writer.add_histogram(k, v, global_step)
64
+ for k, v in images.items():
65
+ writer.add_image(k, v, global_step, dataformats='HWC')
66
+ for k, v in audios.items():
67
+ writer.add_audio(k, v, global_step, audio_sampling_rate)
68
+
69
+
70
+ def latest_checkpoint_path(dir_path, regex="G_*.pth"):
71
+ f_list = glob.glob(os.path.join(dir_path, regex))
72
+ f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
73
+ x = f_list[-1]
74
+ print(x)
75
+ return x
76
+
77
+
78
+ def plot_spectrogram_to_numpy(spectrogram):
79
+ global MATPLOTLIB_FLAG
80
+ if not MATPLOTLIB_FLAG:
81
+ import matplotlib
82
+ matplotlib.use("Agg")
83
+ MATPLOTLIB_FLAG = True
84
+ mpl_logger = logging.getLogger('matplotlib')
85
+ mpl_logger.setLevel(logging.WARNING)
86
+ import matplotlib.pylab as plt
87
+ import numpy as np
88
+
89
+ fig, ax = plt.subplots(figsize=(10,2))
90
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower",
91
+ interpolation='none')
92
+ plt.colorbar(im, ax=ax)
93
+ plt.xlabel("Frames")
94
+ plt.ylabel("Channels")
95
+ plt.tight_layout()
96
+
97
+ fig.canvas.draw()
98
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
99
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
100
+ plt.close()
101
+ return data
102
+
103
+
104
+ def plot_alignment_to_numpy(alignment, info=None):
105
+ global MATPLOTLIB_FLAG
106
+ if not MATPLOTLIB_FLAG:
107
+ import matplotlib
108
+ matplotlib.use("Agg")
109
+ MATPLOTLIB_FLAG = True
110
+ mpl_logger = logging.getLogger('matplotlib')
111
+ mpl_logger.setLevel(logging.WARNING)
112
+ import matplotlib.pylab as plt
113
+ import numpy as np
114
+
115
+ fig, ax = plt.subplots(figsize=(6, 4))
116
+ im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
117
+ interpolation='none')
118
+ fig.colorbar(im, ax=ax)
119
+ xlabel = 'Decoder timestep'
120
+ if info is not None:
121
+ xlabel += '\n\n' + info
122
+ plt.xlabel(xlabel)
123
+ plt.ylabel('Encoder timestep')
124
+ plt.tight_layout()
125
+
126
+ fig.canvas.draw()
127
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
128
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
129
+ plt.close()
130
+ return data
131
+
132
+
133
+ def load_wav_to_torch(full_path):
134
+ sampling_rate, data = read(full_path)
135
+ return torch.FloatTensor(data.astype(np.float32)), sampling_rate
136
+
137
+
138
+ def load_filepaths_and_text(filename, split="|"):
139
+ with open(filename, encoding='utf-8') as f:
140
+ filepaths_and_text = [line.strip().split(split) for line in f]
141
+ return filepaths_and_text
142
+
143
+
144
+ def get_hparams(init=True):
145
+ parser = argparse.ArgumentParser()
146
+ parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
147
+ help='JSON file for configuration')
148
+ parser.add_argument('-m', '--model', type=str, required=True,
149
+ help='Model name')
150
+
151
+ args = parser.parse_args()
152
+ model_dir = os.path.join("./logs", args.model)
153
+
154
+ if not os.path.exists(model_dir):
155
+ os.makedirs(model_dir)
156
+
157
+ config_path = args.config
158
+ config_save_path = os.path.join(model_dir, "config.json")
159
+ if init:
160
+ with open(config_path, "r") as f:
161
+ data = f.read()
162
+ with open(config_save_path, "w") as f:
163
+ f.write(data)
164
+ else:
165
+ with open(config_save_path, "r") as f:
166
+ data = f.read()
167
+ config = json.loads(data)
168
+
169
+ hparams = HParams(**config)
170
+ hparams.model_dir = model_dir
171
+ return hparams
172
+
173
+
174
+ def get_hparams_from_dir(model_dir):
175
+ config_save_path = os.path.join(model_dir, "config.json")
176
+ with open(config_save_path, "r") as f:
177
+ data = f.read()
178
+ config = json.loads(data)
179
+
180
+ hparams =HParams(**config)
181
+ hparams.model_dir = model_dir
182
+ return hparams
183
+
184
+
185
+ def get_hparams_from_file(config_path):
186
+ with open(config_path, "r") as f:
187
+ data = f.read()
188
+ config = json.loads(data)
189
+
190
+ hparams =HParams(**config)
191
+ return hparams
192
+
193
+
194
+ def check_git_hash(model_dir):
195
+ source_dir = os.path.dirname(os.path.realpath(__file__))
196
+ if not os.path.exists(os.path.join(source_dir, ".git")):
197
+ logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
198
+ source_dir
199
+ ))
200
+ return
201
+
202
+ cur_hash = subprocess.getoutput("git rev-parse HEAD")
203
+
204
+ path = os.path.join(model_dir, "githash")
205
+ if os.path.exists(path):
206
+ saved_hash = open(path).read()
207
+ if saved_hash != cur_hash:
208
+ logger.warn("git hash values are different. {}(saved) != {}(current)".format(
209
+ saved_hash[:8], cur_hash[:8]))
210
+ else:
211
+ open(path, "w").write(cur_hash)
212
+
213
+
214
+ def get_logger(model_dir, filename="train.log"):
215
+ global logger
216
+ logger = logging.getLogger(os.path.basename(model_dir))
217
+ logger.setLevel(logging.DEBUG)
218
+
219
+ formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
220
+ if not os.path.exists(model_dir):
221
+ os.makedirs(model_dir)
222
+ h = logging.FileHandler(os.path.join(model_dir, filename))
223
+ h.setLevel(logging.DEBUG)
224
+ h.setFormatter(formatter)
225
+ logger.addHandler(h)
226
+ return logger
227
+
228
+
229
+ class HParams():
230
+ def __init__(self, **kwargs):
231
+ for k, v in kwargs.items():
232
+ if type(v) == dict:
233
+ v = HParams(**v)
234
+ self[k] = v
235
+
236
+ def keys(self):
237
+ return self.__dict__.keys()
238
+
239
+ def items(self):
240
+ return self.__dict__.items()
241
+
242
+ def values(self):
243
+ return self.__dict__.values()
244
+
245
+ def __len__(self):
246
+ return len(self.__dict__)
247
+
248
+ def __getitem__(self, key):
249
+ return getattr(self, key)
250
+
251
+ def __setitem__(self, key, value):
252
+ return setattr(self, key, value)
253
+
254
+ def __contains__(self, key):
255
+ return key in self.__dict__
256
+
257
+ def __repr__(self):
258
+ return self.__dict__.__repr__()