fgs22002 commited on
Commit
2538077
·
1 Parent(s): a25706c

dog-cat model

Browse files
Files changed (8) hide show
  1. Minimal - a Hugging Face Space by fgs22002.pdf +0 -0
  2. app.ipynb +133 -0
  3. app.py +18 -4
  4. app_old.py +7 -0
  5. cat.jpg +0 -0
  6. dog.jpg +0 -0
  7. dunno.jpg +0 -0
  8. model.pkl +3 -0
Minimal - a Hugging Face Space by fgs22002.pdf ADDED
Binary file (167 kB). View file
 
app.ipynb ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "#|default_exp app"
10
+ ]
11
+ },
12
+ {
13
+ "attachments": {},
14
+ "cell_type": "markdown",
15
+ "metadata": {},
16
+ "source": [
17
+ "# Dogs v Cats"
18
+ ]
19
+ },
20
+ {
21
+ "cell_type": "code",
22
+ "execution_count": null,
23
+ "metadata": {},
24
+ "outputs": [],
25
+ "source": [
26
+ "#|export\n",
27
+ "from fastai.vision.all import *\n",
28
+ "import gradio as gr\n",
29
+ "\n",
30
+ "def is_cat(x): return x[0].isupper()"
31
+ ]
32
+ },
33
+ {
34
+ "cell_type": "code",
35
+ "execution_count": null,
36
+ "metadata": {},
37
+ "outputs": [],
38
+ "source": [
39
+ "im = PILImage.create('dog.jpg')\n",
40
+ "im.thumbnail((192,192))\n",
41
+ "im"
42
+ ]
43
+ },
44
+ {
45
+ "cell_type": "code",
46
+ "execution_count": null,
47
+ "metadata": {},
48
+ "outputs": [],
49
+ "source": [
50
+ "#|export\n",
51
+ "import pathlib\n",
52
+ "temp = pathlib.PosixPath\n",
53
+ "pathlib.PosixPath = pathlib.WindowsPath\n",
54
+ "learn = load_learner('model.pkl')\n",
55
+ "pathlib.PosixPath = temp"
56
+ ]
57
+ },
58
+ {
59
+ "cell_type": "code",
60
+ "execution_count": null,
61
+ "metadata": {},
62
+ "outputs": [],
63
+ "source": [
64
+ "learn.predict(im)"
65
+ ]
66
+ },
67
+ {
68
+ "cell_type": "code",
69
+ "execution_count": null,
70
+ "metadata": {},
71
+ "outputs": [],
72
+ "source": [
73
+ "#|export\n",
74
+ "categories = ('Dog', 'Cat')\n",
75
+ "\n",
76
+ "def classify_image(img):\n",
77
+ " pred,idx,probs = learn.predict(img)\n",
78
+ " return dict(zip(categories, map(float, probs)))"
79
+ ]
80
+ },
81
+ {
82
+ "cell_type": "code",
83
+ "execution_count": null,
84
+ "metadata": {},
85
+ "outputs": [],
86
+ "source": [
87
+ "classify_image(im)"
88
+ ]
89
+ },
90
+ {
91
+ "cell_type": "code",
92
+ "execution_count": null,
93
+ "metadata": {},
94
+ "outputs": [],
95
+ "source": [
96
+ "#|export\n",
97
+ "image = gr.inputs.Image(shape=(192,192))\n",
98
+ "label = gr.outputs.Label()\n",
99
+ "examples = ['dog.jpg', 'cat.jpg', 'dunno.jpg']\n",
100
+ "\n",
101
+ "intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)\n",
102
+ "intf.launch(inline=False)"
103
+ ]
104
+ }
105
+ ],
106
+ "metadata": {
107
+ "kernelspec": {
108
+ "display_name": "base",
109
+ "language": "python",
110
+ "name": "python3"
111
+ },
112
+ "language_info": {
113
+ "codemirror_mode": {
114
+ "name": "ipython",
115
+ "version": 3
116
+ },
117
+ "file_extension": ".py",
118
+ "mimetype": "text/x-python",
119
+ "name": "python",
120
+ "nbconvert_exporter": "python",
121
+ "pygments_lexer": "ipython3",
122
+ "version": "3.8.8"
123
+ },
124
+ "orig_nbformat": 4,
125
+ "vscode": {
126
+ "interpreter": {
127
+ "hash": "793ac646cb1bdfbbf9b49ec8438cf418377ae0464a060bb58045a63a1c103122"
128
+ }
129
+ }
130
+ },
131
+ "nbformat": 4,
132
+ "nbformat_minor": 2
133
+ }
app.py CHANGED
@@ -1,7 +1,21 @@
 
 
1
  import gradio as gr
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- iface.launch()
 
1
+
2
+ from fastai.vision.all import *
3
  import gradio as gr
4
 
5
+ def is_cat(x): return x[0].isupper()
6
+ import pathlib
7
+ temp = pathlib.PosixPath
8
+ pathlib.PosixPath = pathlib.WindowsPath
9
+ learn = load_learner('model.pkl')
10
+ pathlib.PosixPath = temp
11
+ categories = ('Dog', 'Cat')
12
+ def classify_image(img):
13
+ pred,idx,probs = learn.predict(img)
14
+ return dict(zip(categories, map(float, probs)))
15
+ image = gr.inputs.Image(shape=(192,192))
16
+ label = gr.outputs.Label()
17
+ examples = ['dog.jpg', 'cat.jpg', 'dunno.jpg']
18
+ intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
19
+ intf.launch(inline=False)
20
+
21
 
 
 
app_old.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ def greet(name):
4
+ return "Hello " + name + "!!"
5
+
6
+ iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
+ iface.launch()
cat.jpg ADDED
dog.jpg ADDED
dunno.jpg ADDED
model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:973902c0345a943c47acdfc4b5db1e51c338c0cd314d59f9cd910451841bfe7e
3
+ size 47061483