ferferefer
commited on
Commit
•
f545fa4
1
Parent(s):
2c57916
Delete glaucoma.py
Browse files- glaucoma.py +0 -92
glaucoma.py
DELETED
@@ -1,92 +0,0 @@
|
|
1 |
-
import cv2
|
2 |
-
import torch
|
3 |
-
|
4 |
-
import numpy as np
|
5 |
-
|
6 |
-
from torch import nn
|
7 |
-
from transformers import AutoImageProcessor, Swinv2ForImageClassification, SegformerForSemanticSegmentation
|
8 |
-
|
9 |
-
from cam import ClassActivationMap
|
10 |
-
from utils import add_mask, simple_vcdr
|
11 |
-
|
12 |
-
|
13 |
-
class GlaucomaModel(object):
|
14 |
-
def __init__(self,
|
15 |
-
cls_model_path="pamixsun/swinv2_tiny_for_glaucoma_classification",
|
16 |
-
seg_model_path='pamixsun/segformer_for_optic_disc_cup_segmentation',
|
17 |
-
device=torch.device('cpu')):
|
18 |
-
# where to load the model, gpu or cpu ?
|
19 |
-
self.device = device
|
20 |
-
# classification model for glaucoma
|
21 |
-
self.cls_extractor = AutoImageProcessor.from_pretrained(cls_model_path)
|
22 |
-
self.cls_model = Swinv2ForImageClassification.from_pretrained(cls_model_path).to(device).eval()
|
23 |
-
# segmentation model for optic disc and cup
|
24 |
-
self.seg_extractor = AutoImageProcessor.from_pretrained(seg_model_path)
|
25 |
-
self.seg_model = SegformerForSemanticSegmentation.from_pretrained(seg_model_path).to(device).eval()
|
26 |
-
# class activation map
|
27 |
-
self.cam = ClassActivationMap(self.cls_model, self.cls_extractor)
|
28 |
-
|
29 |
-
# classification id to label
|
30 |
-
self.cls_id2label = self.cls_model.config.id2label
|
31 |
-
# segmentation id to label
|
32 |
-
self.seg_id2label = self.seg_model.config.id2label
|
33 |
-
|
34 |
-
# number of classes for classification
|
35 |
-
self.num_diseases = len(self.cls_id2label)
|
36 |
-
# number of classes for segmentation
|
37 |
-
self.seg_classes = len(self.seg_id2label)
|
38 |
-
|
39 |
-
def glaucoma_pred(self, image):
|
40 |
-
"""
|
41 |
-
Args:
|
42 |
-
image: image array in RGB order.
|
43 |
-
"""
|
44 |
-
inputs = self.cls_extractor(images=image.copy(), return_tensors="pt")
|
45 |
-
with torch.no_grad():
|
46 |
-
inputs.to(self.device)
|
47 |
-
outputs = self.cls_model(**inputs).logits
|
48 |
-
disease_idx = outputs.cpu()[0, :].detach().numpy().argmax()
|
49 |
-
|
50 |
-
return disease_idx
|
51 |
-
|
52 |
-
def optic_disc_cup_pred(self, image):
|
53 |
-
"""
|
54 |
-
Args:
|
55 |
-
image: image array in RGB order.
|
56 |
-
"""
|
57 |
-
inputs = self.seg_extractor(images=image.copy(), return_tensors="pt")
|
58 |
-
|
59 |
-
with torch.no_grad():
|
60 |
-
inputs.to(self.device)
|
61 |
-
outputs = self.seg_model(**inputs)
|
62 |
-
logits = outputs.logits.cpu()
|
63 |
-
|
64 |
-
upsampled_logits = nn.functional.interpolate(
|
65 |
-
logits,
|
66 |
-
size=image.shape[:2],
|
67 |
-
mode="bilinear",
|
68 |
-
align_corners=False,
|
69 |
-
)
|
70 |
-
|
71 |
-
pred_disc_cup = upsampled_logits.argmax(dim=1)[0]
|
72 |
-
|
73 |
-
return pred_disc_cup.numpy().astype(np.uint8)
|
74 |
-
|
75 |
-
def process(self, image):
|
76 |
-
"""
|
77 |
-
Args:
|
78 |
-
image: image array in RGB order.
|
79 |
-
"""
|
80 |
-
image_shape = image.shape[:2]
|
81 |
-
disease_idx = self.glaucoma_pred(image)
|
82 |
-
cam = self.cam.get_cam(image, disease_idx)
|
83 |
-
cam = cv2.resize(cam, image_shape[::-1])
|
84 |
-
disc_cup = self.optic_disc_cup_pred(image)
|
85 |
-
try:
|
86 |
-
vcdr = simple_vcdr(disc_cup)
|
87 |
-
except:
|
88 |
-
vcdr = np.nan
|
89 |
-
_, disc_cup_image = add_mask(image, disc_cup, [1, 2], [[0, 255, 0], [255, 0, 0]], 0.2)
|
90 |
-
|
91 |
-
return disease_idx, disc_cup_image, cam, vcdr
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|