luigi12345's picture
m
8a1d3d2
raw
history blame
10.9 kB
import cv2
import torch
import numpy as np
import torch.nn.functional as F
from torch import nn
from transformers import AutoImageProcessor, Swinv2ForImageClassification, SegformerForSemanticSegmentation
import streamlit as st
from PIL import Image
import io
import zipfile
import pandas as pd
from datetime import datetime
import os
import tempfile
# --- GlaucomaModel Class ---
class GlaucomaModel(object):
def __init__(self,
cls_model_path="pamixsun/swinv2_tiny_for_glaucoma_classification",
seg_model_path='pamixsun/segformer_for_optic_disc_cup_segmentation',
device=torch.device('cpu')):
self.device = device
# Classification model for glaucoma
self.cls_extractor = AutoImageProcessor.from_pretrained(cls_model_path)
self.cls_model = Swinv2ForImageClassification.from_pretrained(cls_model_path).to(device).eval()
# Segmentation model for optic disc and cup
self.seg_extractor = AutoImageProcessor.from_pretrained(seg_model_path)
self.seg_model = SegformerForSemanticSegmentation.from_pretrained(seg_model_path).to(device).eval()
# Mapping for class labels
self.cls_id2label = self.cls_model.config.id2label
def glaucoma_pred(self, image):
inputs = self.cls_extractor(images=image.copy(), return_tensors="pt")
with torch.no_grad():
inputs.to(self.device)
outputs = self.cls_model(**inputs).logits
probs = F.softmax(outputs, dim=-1)
disease_idx = probs.cpu()[0, :].numpy().argmax()
confidence = probs.cpu()[0, disease_idx].item() * 100
return disease_idx, confidence
def optic_disc_cup_pred(self, image):
inputs = self.seg_extractor(images=image.copy(), return_tensors="pt")
with torch.no_grad():
inputs.to(self.device)
outputs = self.seg_model(**inputs)
logits = outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(
logits, size=image.shape[:2], mode="bilinear", align_corners=False
)
seg_probs = F.softmax(upsampled_logits, dim=1)
pred_disc_cup = upsampled_logits.argmax(dim=1)[0]
# Calculate segmentation confidence based on probability distribution
# For each pixel classified as cup/disc, check how confident the model is
cup_mask = pred_disc_cup == 2
disc_mask = pred_disc_cup == 1
# Get confidence only for pixels predicted as cup/disc
cup_confidence = seg_probs[0, 2, cup_mask].mean().item() * 100 if cup_mask.any() else 0
disc_confidence = seg_probs[0, 1, disc_mask].mean().item() * 100 if disc_mask.any() else 0
return pred_disc_cup.numpy().astype(np.uint8), cup_confidence, disc_confidence
def process(self, image):
disease_idx, cls_confidence = self.glaucoma_pred(image)
disc_cup, cup_confidence, disc_confidence = self.optic_disc_cup_pred(image)
try:
vcdr = simple_vcdr(disc_cup)
except:
vcdr = np.nan
mask = (disc_cup > 0).astype(np.uint8)
x, y, w, h = cv2.boundingRect(mask)
padding = max(50, int(0.2 * max(w, h)))
x = max(x - padding, 0)
y = max(y - padding, 0)
w = min(w + 2 * padding, image.shape[1] - x)
h = min(h + 2 * padding, image.shape[0] - y)
cropped_image = image[y:y+h, x:x+w] if w >= 50 and h >= 50 else image.copy()
_, disc_cup_image = add_mask(image, disc_cup, [1, 2], [[0, 255, 0], [255, 0, 0]], 0.2)
return disease_idx, disc_cup_image, vcdr, cls_confidence, cup_confidence, disc_confidence, cropped_image
# --- Utility Functions ---
def simple_vcdr(mask):
disc_area = np.sum(mask == 1)
cup_area = np.sum(mask == 2)
if disc_area == 0:
return np.nan
vcdr = cup_area / disc_area
return vcdr
def add_mask(image, mask, classes, colors, alpha=0.5):
overlay = image.copy()
for class_id, color in zip(classes, colors):
overlay[mask == class_id] = color
output = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0)
return output, overlay
def get_confidence_level(confidence):
if confidence >= 90:
return "Very High"
elif confidence >= 75:
return "High"
elif confidence >= 60:
return "Moderate"
elif confidence >= 45:
return "Low"
else:
return "Very Low"
def process_batch(model, images_data, progress_bar=None):
results = []
for idx, (file_name, image) in enumerate(images_data):
try:
disease_idx, disc_cup_image, vcdr, cls_conf, cup_conf, disc_conf, cropped_image = model.process(image)
results.append({
'file_name': file_name,
'diagnosis': model.cls_id2label[disease_idx],
'confidence': cls_conf,
'vcdr': vcdr,
'cup_conf': cup_conf,
'disc_conf': disc_conf,
'processed_image': disc_cup_image,
'cropped_image': cropped_image
})
if progress_bar:
progress_bar.progress((idx + 1) / len(images_data))
except Exception as e:
st.error(f"Error processing {file_name}: {str(e)}")
return results
def save_results(results, original_images):
# Create temporary directory for results
with tempfile.TemporaryDirectory() as temp_dir:
# Save report as CSV
df = pd.DataFrame([{
'File': r['file_name'],
'Diagnosis': r['diagnosis'],
'Confidence (%)': f"{r['confidence']:.1f}",
'VCDR': f"{r['vcdr']:.3f}",
'Cup Confidence (%)': f"{r['cup_conf']:.1f}",
'Disc Confidence (%)': f"{r['disc_conf']:.1f}"
} for r in results])
report_path = os.path.join(temp_dir, 'report.csv')
df.to_csv(report_path, index=False)
# Save processed images
for result, orig_img in zip(results, original_images):
img_name = result['file_name']
base_name = os.path.splitext(img_name)[0]
# Save original
orig_path = os.path.join(temp_dir, f"{base_name}_original.jpg")
Image.fromarray(orig_img).save(orig_path)
# Save segmentation
seg_path = os.path.join(temp_dir, f"{base_name}_segmentation.jpg")
Image.fromarray(result['processed_image']).save(seg_path)
# Save ROI
roi_path = os.path.join(temp_dir, f"{base_name}_roi.jpg")
Image.fromarray(result['cropped_image']).save(roi_path)
# Create ZIP file
zip_path = os.path.join(temp_dir, 'results.zip')
with zipfile.ZipFile(zip_path, 'w') as zipf:
for root, _, files in os.walk(temp_dir):
for file in files:
if file != 'results.zip':
file_path = os.path.join(root, file)
arcname = os.path.basename(file_path)
zipf.write(file_path, arcname)
with open(zip_path, 'rb') as f:
return f.read()
# --- Streamlit Interface ---
def main():
st.set_page_config(layout="wide", page_title="Glaucoma Screening Tool")
st.markdown("""
<h1 style='text-align: center;'>Glaucoma Screening from Retinal Fundus Images</h1>
<p style='text-align: center; color: gray;'>Upload retinal images for automated glaucoma detection and optic disc/cup segmentation</p>
""", unsafe_allow_html=True)
# Simple sidebar without columns
st.sidebar.markdown("### 📤 Upload Images")
uploaded_files = st.sidebar.file_uploader(
"Upload Retinal Images",
type=['png', 'jpeg', 'jpg'],
accept_multiple_files=True,
help="Support multiple images in PNG, JPEG formats"
)
st.sidebar.markdown("### Settings")
max_batch = st.sidebar.number_input("Max Batch Size",
min_value=1,
max_value=100,
value=20)
if uploaded_files:
if len(uploaded_files) > max_batch:
st.warning(f"Please upload maximum {max_batch} images at once.")
return
st.markdown(f"Total images: {len(uploaded_files)}")
st.markdown(f"Using: {'GPU' if torch.cuda.is_available() else 'CPU'}")
# Initialize model
model = GlaucomaModel(device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"))
# Process images
images_data = []
original_images = []
for file in uploaded_files:
try:
image = Image.open(file).convert('RGB')
image_np = np.array(image)
images_data.append((file.name, image_np))
original_images.append(image_np)
except Exception as e:
st.error(f"Error loading {file.name}: {str(e)}")
continue
progress = st.progress(0)
st.write(f"Processing {len(images_data)} images...")
# Process all images
results = process_batch(model, images_data, progress)
if results:
# Show results one by one
for result in results:
st.markdown(f"### Results for {result['file_name']}")
st.markdown(f"**Diagnosis:** {result['diagnosis']}")
st.markdown(f"**Confidence:** {result['confidence']:.1f}%")
st.markdown(f"**VCDR:** {result['vcdr']:.3f}")
# Display images
st.image(result['processed_image'], caption="Segmentation")
st.image(result['cropped_image'], caption="ROI")
st.markdown("---")
# Generate downloads
zip_data = save_results(results, original_images)
st.markdown("### Download Results")
st.download_button(
label="Download All Results (ZIP)",
data=zip_data,
file_name=f"glaucoma_screening_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip",
mime="application/zip"
)
# Simple summary
st.markdown("### Summary")
glaucoma_count = sum(1 for r in results if r['diagnosis'] == 'Glaucoma')
normal_count = len(results) - glaucoma_count
st.markdown(f"**Total Processed:** {len(results)}")
st.markdown(f"**Glaucoma Detected:** {glaucoma_count}")
st.markdown(f"**Normal:** {normal_count}")
st.markdown(f"**Average Confidence:** {sum(r['confidence'] for r in results) / len(results):.1f}%")
if __name__ == "__main__":
main()