Marco-O1 / app.py
ferferefer's picture
a
cfb1176
raw
history blame
2.77 kB
import gradio as gr
from transformers import pipeline
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
import os
# Load the embedding model
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
# Load the pre-existing vector database
persist_directory = "db"
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
# Load the Marco-o1 model
pipe = pipeline("text-generation", model="AIDC-AI/Marco-o1", device_map="auto", torch_dtype="auto", trust_remote_code=True)
def get_relevant_context(query, k=3):
# Search the vector database for relevant documents
docs = vectordb.similarity_search(query, k=k)
# Combine the relevant documents into a single context string
context = "\n".join([doc.page_content for doc in docs])
return context
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [system_message]
# Get relevant context from the vector database
context = get_relevant_context(message)
# Add context to the system message
if context:
messages[0] = f"{system_message}\n\nRelevant context:\n{context}"
for val in history:
if val[0]:
messages.append(val[0])
if val[1]:
messages.append(val[1])
messages.append(message)
# Combine all messages into one string
input_text = "\n".join(messages)
response = pipe(
input_text,
max_length=max_tokens + len(input_text),
temperature=temperature,
top_p=top_p,
num_return_sequences=1
)[0]['generated_text']
# Extract new response
new_response = response[len(input_text):].strip()
yield new_response
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="You are a helpful AI assistant. Use the provided context to answer questions accurately.",
label="System message"
),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
title="Marco-O1 Assistant with Knowledge Base",
description="Ask questions about the documents in the knowledge base. The assistant will use the relevant context to provide accurate answers."
)
if __name__ == "__main__":
demo.launch()