fengtc commited on
Commit
3cdf8fd
1 Parent(s): b8eea15

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -45
app.py CHANGED
@@ -11,64 +11,22 @@ from langchain.schema import AIMessage, HumanMessage
11
 
12
 
13
  import os
14
- # os.environ["OPENAI_API_KEY"] = 'sk-U'
15
-
16
  OPENAI_API_KEY=os.getenv('OPENAI_API_KEY')
17
 
18
  import pinecone
19
-
20
  # 初始化 pinecone
21
  pinecone.init(
22
  api_key=os.getenv('pinecone_api_key'),
23
  environment="gcp-starter"
24
  )
25
 
26
- index_name="pdf-index"
27
-
28
-
29
- pdf_files = ['./ANSYS_Fluent_Text_Command_List.pdf']
30
- raw_text = ''
31
-
32
- for file in pdf_files:
33
- reader = PdfReader(file)
34
- for i, page in enumerate(reader.pages):
35
-
36
- text = page.extract_text()
37
- if text:
38
- raw_text += text
39
-
40
-
41
- text_splitter = CharacterTextSplitter(
42
- separator="\n",
43
- chunk_size=1000,
44
- chunk_overlap=200,
45
- length_function=len
46
- )
47
-
48
- # texts = text_splitter.split_text(raw_text)
49
-
50
- with open("output.txt", "w", encoding="utf-8") as file:
51
- file.write(raw_text)
52
-
53
- texts = text_splitter.split_text(raw_text)
54
 
55
  embeddings = OpenAIEmbeddings()
56
-
57
- # 持久化数据
58
- #docsearch = Pinecone.from_texts([t.page_content for t in texts], embeddings, index_name=index_name)
59
-
60
  # 加载数据
61
  docsearch = Pinecone.from_existing_index(index_name, embeddings)
62
-
63
- #embeddings = OpenAIEmbeddings()
64
- #embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
65
- #docsearch = FAISS.from_texts(texts, embeddings)
66
  chain = load_qa_chain(OpenAI(), chain_type="stuff")
67
 
68
-
69
-
70
- #llm = ChatOpenAI(temperature=1.0, model='gpt-3.5-turbo-0613')
71
-
72
  def predict(message, history):
73
  history_langchain_format = []
74
  for human, ai in history:
@@ -84,8 +42,6 @@ def predict(message, history):
84
  partial_message = partial_message + chunk['choices'][0]['delta']['content']
85
  yield partial_message
86
 
87
-
88
- #return response
89
 
90
  gr.ChatInterface(predict).queue().launch()
91
 
 
11
 
12
 
13
  import os
 
 
14
  OPENAI_API_KEY=os.getenv('OPENAI_API_KEY')
15
 
16
  import pinecone
 
17
  # 初始化 pinecone
18
  pinecone.init(
19
  api_key=os.getenv('pinecone_api_key'),
20
  environment="gcp-starter"
21
  )
22
 
23
+ index_name="text-index"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
  embeddings = OpenAIEmbeddings()
 
 
 
 
26
  # 加载数据
27
  docsearch = Pinecone.from_existing_index(index_name, embeddings)
 
 
 
 
28
  chain = load_qa_chain(OpenAI(), chain_type="stuff")
29
 
 
 
 
 
30
  def predict(message, history):
31
  history_langchain_format = []
32
  for human, ai in history:
 
42
  partial_message = partial_message + chunk['choices'][0]['delta']['content']
43
  yield partial_message
44
 
 
 
45
 
46
  gr.ChatInterface(predict).queue().launch()
47