feng2022 commited on
Commit
f9f1dd0
1 Parent(s): b74c99a

another try

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Time-Travel-Rephotography +1 -0
  2. Time_TravelRephotography/LICENSE +0 -21
  3. Time_TravelRephotography/LICENSE-NVIDIA +0 -101
  4. Time_TravelRephotography/LICENSE-STYLEGAN2 +0 -21
  5. Time_TravelRephotography/dnnlib/__init__.py +0 -11
  6. Time_TravelRephotography/dnnlib/tflib/__init__.py +0 -20
  7. Time_TravelRephotography/dnnlib/tflib/autosummary.py +0 -193
  8. Time_TravelRephotography/dnnlib/tflib/custom_ops.py +0 -171
  9. Time_TravelRephotography/dnnlib/tflib/network.py +0 -592
  10. Time_TravelRephotography/dnnlib/tflib/ops/__init__.py +0 -9
  11. Time_TravelRephotography/dnnlib/tflib/ops/fused_bias_act.cu +0 -190
  12. Time_TravelRephotography/dnnlib/tflib/ops/fused_bias_act.py +0 -198
  13. Time_TravelRephotography/dnnlib/tflib/ops/upfirdn_2d.cu +0 -328
  14. Time_TravelRephotography/dnnlib/tflib/ops/upfirdn_2d.py +0 -366
  15. Time_TravelRephotography/dnnlib/tflib/optimizer.py +0 -338
  16. Time_TravelRephotography/dnnlib/tflib/tfutil.py +0 -254
  17. Time_TravelRephotography/dnnlib/util.py +0 -479
  18. Time_TravelRephotography/losses/color_transfer_loss.py +0 -60
  19. Time_TravelRephotography/losses/contextual_loss/.gitignore +0 -104
  20. Time_TravelRephotography/losses/contextual_loss/LICENSE +0 -21
  21. Time_TravelRephotography/losses/contextual_loss/__init__.py +0 -1
  22. Time_TravelRephotography/losses/contextual_loss/config.py +0 -2
  23. Time_TravelRephotography/losses/contextual_loss/functional.py +0 -198
  24. Time_TravelRephotography/losses/contextual_loss/modules/__init__.py +0 -5
  25. Time_TravelRephotography/losses/contextual_loss/modules/contextual.py +0 -122
  26. Time_TravelRephotography/losses/contextual_loss/modules/contextual_bilateral.py +0 -69
  27. Time_TravelRephotography/losses/contextual_loss/modules/vgg.py +0 -48
  28. Time_TravelRephotography/losses/joint_loss.py +0 -167
  29. Time_TravelRephotography/losses/perceptual_loss.py +0 -111
  30. Time_TravelRephotography/losses/reconstruction.py +0 -119
  31. Time_TravelRephotography/losses/regularize_noise.py +0 -37
  32. Time_TravelRephotography/model.py +0 -697
  33. Time_TravelRephotography/models/__init__.py +0 -0
  34. Time_TravelRephotography/models/degrade.py +0 -122
  35. Time_TravelRephotography/models/encoder.py +0 -66
  36. Time_TravelRephotography/models/encoder4editing/.gitignore +0 -133
  37. Time_TravelRephotography/models/encoder4editing/LICENSE +0 -21
  38. Time_TravelRephotography/models/encoder4editing/README.md +0 -143
  39. Time_TravelRephotography/models/encoder4editing/__init__.py +0 -15
  40. Time_TravelRephotography/models/encoder4editing/bash_scripts/inference.sh +0 -15
  41. Time_TravelRephotography/models/encoder4editing/configs/__init__.py +0 -0
  42. Time_TravelRephotography/models/encoder4editing/configs/data_configs.py +0 -41
  43. Time_TravelRephotography/models/encoder4editing/configs/paths_config.py +0 -28
  44. Time_TravelRephotography/models/encoder4editing/configs/transforms_config.py +0 -62
  45. Time_TravelRephotography/models/encoder4editing/criteria/__init__.py +0 -0
  46. Time_TravelRephotography/models/encoder4editing/criteria/id_loss.py +0 -47
  47. Time_TravelRephotography/models/encoder4editing/criteria/lpips/__init__.py +0 -0
  48. Time_TravelRephotography/models/encoder4editing/criteria/lpips/lpips.py +0 -35
  49. Time_TravelRephotography/models/encoder4editing/criteria/lpips/networks.py +0 -96
  50. Time_TravelRephotography/models/encoder4editing/criteria/lpips/utils.py +0 -30
Time-Travel-Rephotography ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit 2045d895f671e72e4dca1f81327b1ce462a7d32f
Time_TravelRephotography/LICENSE DELETED
@@ -1,21 +0,0 @@
1
- MIT License
2
-
3
- Copyright (c) 2020 Time-Travel-Rephotography
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/LICENSE-NVIDIA DELETED
@@ -1,101 +0,0 @@
1
- Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
2
-
3
-
4
- Nvidia Source Code License-NC
5
-
6
- =======================================================================
7
-
8
- 1. Definitions
9
-
10
- "Licensor" means any person or entity that distributes its Work.
11
-
12
- "Software" means the original work of authorship made available under
13
- this License.
14
-
15
- "Work" means the Software and any additions to or derivative works of
16
- the Software that are made available under this License.
17
-
18
- "Nvidia Processors" means any central processing unit (CPU), graphics
19
- processing unit (GPU), field-programmable gate array (FPGA),
20
- application-specific integrated circuit (ASIC) or any combination
21
- thereof designed, made, sold, or provided by Nvidia or its affiliates.
22
-
23
- The terms "reproduce," "reproduction," "derivative works," and
24
- "distribution" have the meaning as provided under U.S. copyright law;
25
- provided, however, that for the purposes of this License, derivative
26
- works shall not include works that remain separable from, or merely
27
- link (or bind by name) to the interfaces of, the Work.
28
-
29
- Works, including the Software, are "made available" under this License
30
- by including in or with the Work either (a) a copyright notice
31
- referencing the applicability of this License to the Work, or (b) a
32
- copy of this License.
33
-
34
- 2. License Grants
35
-
36
- 2.1 Copyright Grant. Subject to the terms and conditions of this
37
- License, each Licensor grants to you a perpetual, worldwide,
38
- non-exclusive, royalty-free, copyright license to reproduce,
39
- prepare derivative works of, publicly display, publicly perform,
40
- sublicense and distribute its Work and any resulting derivative
41
- works in any form.
42
-
43
- 3. Limitations
44
-
45
- 3.1 Redistribution. You may reproduce or distribute the Work only
46
- if (a) you do so under this License, (b) you include a complete
47
- copy of this License with your distribution, and (c) you retain
48
- without modification any copyright, patent, trademark, or
49
- attribution notices that are present in the Work.
50
-
51
- 3.2 Derivative Works. You may specify that additional or different
52
- terms apply to the use, reproduction, and distribution of your
53
- derivative works of the Work ("Your Terms") only if (a) Your Terms
54
- provide that the use limitation in Section 3.3 applies to your
55
- derivative works, and (b) you identify the specific derivative
56
- works that are subject to Your Terms. Notwithstanding Your Terms,
57
- this License (including the redistribution requirements in Section
58
- 3.1) will continue to apply to the Work itself.
59
-
60
- 3.3 Use Limitation. The Work and any derivative works thereof only
61
- may be used or intended for use non-commercially. The Work or
62
- derivative works thereof may be used or intended for use by Nvidia
63
- or its affiliates commercially or non-commercially. As used herein,
64
- "non-commercially" means for research or evaluation purposes only.
65
-
66
- 3.4 Patent Claims. If you bring or threaten to bring a patent claim
67
- against any Licensor (including any claim, cross-claim or
68
- counterclaim in a lawsuit) to enforce any patents that you allege
69
- are infringed by any Work, then your rights under this License from
70
- such Licensor (including the grants in Sections 2.1 and 2.2) will
71
- terminate immediately.
72
-
73
- 3.5 Trademarks. This License does not grant any rights to use any
74
- Licensor's or its affiliates' names, logos, or trademarks, except
75
- as necessary to reproduce the notices described in this License.
76
-
77
- 3.6 Termination. If you violate any term of this License, then your
78
- rights under this License (including the grants in Sections 2.1 and
79
- 2.2) will terminate immediately.
80
-
81
- 4. Disclaimer of Warranty.
82
-
83
- THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY
84
- KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF
85
- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR
86
- NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER
87
- THIS LICENSE.
88
-
89
- 5. Limitation of Liability.
90
-
91
- EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL
92
- THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE
93
- SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT,
94
- INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
95
- OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK
96
- (INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION,
97
- LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER
98
- COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF
99
- THE POSSIBILITY OF SUCH DAMAGES.
100
-
101
- =======================================================================
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/LICENSE-STYLEGAN2 DELETED
@@ -1,21 +0,0 @@
1
- MIT License
2
-
3
- Copyright (c) 2019 Kim Seonghyeon
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/dnnlib/__init__.py DELETED
@@ -1,11 +0,0 @@
1
- # Copyright (c) SenseTime Research. All rights reserved.
2
-
3
- # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
4
- #
5
- # NVIDIA CORPORATION and its licensors retain all intellectual property
6
- # and proprietary rights in and to this software, related documentation
7
- # and any modifications thereto. Any use, reproduction, disclosure or
8
- # distribution of this software and related documentation without an express
9
- # license agreement from NVIDIA CORPORATION is strictly prohibited.
10
-
11
- from .util import EasyDict, make_cache_dir_path
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/dnnlib/tflib/__init__.py DELETED
@@ -1,20 +0,0 @@
1
- # Copyright (c) SenseTime Research. All rights reserved.
2
-
3
- # Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
4
- #
5
- # This work is made available under the Nvidia Source Code License-NC.
6
- # To view a copy of this license, visit
7
- # https://nvlabs.github.io/stylegan2/license.html
8
-
9
- from . import autosummary
10
- from . import network
11
- from . import optimizer
12
- from . import tfutil
13
- from . import custom_ops
14
-
15
- from .tfutil import *
16
- from .network import Network
17
-
18
- from .optimizer import Optimizer
19
-
20
- from .custom_ops import get_plugin
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/dnnlib/tflib/autosummary.py DELETED
@@ -1,193 +0,0 @@
1
- # Copyright (c) SenseTime Research. All rights reserved.
2
-
3
- # Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
4
- #
5
- # This work is made available under the Nvidia Source Code License-NC.
6
- # To view a copy of this license, visit
7
- # https://nvlabs.github.io/stylegan2/license.html
8
-
9
- """Helper for adding automatically tracked values to Tensorboard.
10
-
11
- Autosummary creates an identity op that internally keeps track of the input
12
- values and automatically shows up in TensorBoard. The reported value
13
- represents an average over input components. The average is accumulated
14
- constantly over time and flushed when save_summaries() is called.
15
-
16
- Notes:
17
- - The output tensor must be used as an input for something else in the
18
- graph. Otherwise, the autosummary op will not get executed, and the average
19
- value will not get accumulated.
20
- - It is perfectly fine to include autosummaries with the same name in
21
- several places throughout the graph, even if they are executed concurrently.
22
- - It is ok to also pass in a python scalar or numpy array. In this case, it
23
- is added to the average immediately.
24
- """
25
-
26
- from collections import OrderedDict
27
- import numpy as np
28
- import tensorflow as tf
29
- from tensorboard import summary as summary_lib
30
- from tensorboard.plugins.custom_scalar import layout_pb2
31
-
32
- from . import tfutil
33
- from .tfutil import TfExpression
34
- from .tfutil import TfExpressionEx
35
-
36
- # Enable "Custom scalars" tab in TensorBoard for advanced formatting.
37
- # Disabled by default to reduce tfevents file size.
38
- enable_custom_scalars = False
39
-
40
- _dtype = tf.float64
41
- _vars = OrderedDict() # name => [var, ...]
42
- _immediate = OrderedDict() # name => update_op, update_value
43
- _finalized = False
44
- _merge_op = None
45
-
46
-
47
- def _create_var(name: str, value_expr: TfExpression) -> TfExpression:
48
- """Internal helper for creating autosummary accumulators."""
49
- assert not _finalized
50
- name_id = name.replace("/", "_")
51
- v = tf.cast(value_expr, _dtype)
52
-
53
- if v.shape.is_fully_defined():
54
- size = np.prod(v.shape.as_list())
55
- size_expr = tf.constant(size, dtype=_dtype)
56
- else:
57
- size = None
58
- size_expr = tf.reduce_prod(tf.cast(tf.shape(v), _dtype))
59
-
60
- if size == 1:
61
- if v.shape.ndims != 0:
62
- v = tf.reshape(v, [])
63
- v = [size_expr, v, tf.square(v)]
64
- else:
65
- v = [size_expr, tf.reduce_sum(v), tf.reduce_sum(tf.square(v))]
66
- v = tf.cond(tf.is_finite(v[1]), lambda: tf.stack(v), lambda: tf.zeros(3, dtype=_dtype))
67
-
68
- with tfutil.absolute_name_scope("Autosummary/" + name_id), tf.control_dependencies(None):
69
- var = tf.Variable(tf.zeros(3, dtype=_dtype), trainable=False) # [sum(1), sum(x), sum(x**2)]
70
- update_op = tf.cond(tf.is_variable_initialized(var), lambda: tf.assign_add(var, v), lambda: tf.assign(var, v))
71
-
72
- if name in _vars:
73
- _vars[name].append(var)
74
- else:
75
- _vars[name] = [var]
76
- return update_op
77
-
78
-
79
- def autosummary(name: str, value: TfExpressionEx, passthru: TfExpressionEx = None, condition: TfExpressionEx = True) -> TfExpressionEx:
80
- """Create a new autosummary.
81
-
82
- Args:
83
- name: Name to use in TensorBoard
84
- value: TensorFlow expression or python value to track
85
- passthru: Optionally return this TF node without modifications but tack an autosummary update side-effect to this node.
86
-
87
- Example use of the passthru mechanism:
88
-
89
- n = autosummary('l2loss', loss, passthru=n)
90
-
91
- This is a shorthand for the following code:
92
-
93
- with tf.control_dependencies([autosummary('l2loss', loss)]):
94
- n = tf.identity(n)
95
- """
96
- tfutil.assert_tf_initialized()
97
- name_id = name.replace("/", "_")
98
-
99
- if tfutil.is_tf_expression(value):
100
- with tf.name_scope("summary_" + name_id), tf.device(value.device):
101
- condition = tf.convert_to_tensor(condition, name='condition')
102
- update_op = tf.cond(condition, lambda: tf.group(_create_var(name, value)), tf.no_op)
103
- with tf.control_dependencies([update_op]):
104
- return tf.identity(value if passthru is None else passthru)
105
-
106
- else: # python scalar or numpy array
107
- assert not tfutil.is_tf_expression(passthru)
108
- assert not tfutil.is_tf_expression(condition)
109
- if condition:
110
- if name not in _immediate:
111
- with tfutil.absolute_name_scope("Autosummary/" + name_id), tf.device(None), tf.control_dependencies(None):
112
- update_value = tf.placeholder(_dtype)
113
- update_op = _create_var(name, update_value)
114
- _immediate[name] = update_op, update_value
115
- update_op, update_value = _immediate[name]
116
- tfutil.run(update_op, {update_value: value})
117
- return value if passthru is None else passthru
118
-
119
-
120
- def finalize_autosummaries() -> None:
121
- """Create the necessary ops to include autosummaries in TensorBoard report.
122
- Note: This should be done only once per graph.
123
- """
124
- global _finalized
125
- tfutil.assert_tf_initialized()
126
-
127
- if _finalized:
128
- return None
129
-
130
- _finalized = True
131
- tfutil.init_uninitialized_vars([var for vars_list in _vars.values() for var in vars_list])
132
-
133
- # Create summary ops.
134
- with tf.device(None), tf.control_dependencies(None):
135
- for name, vars_list in _vars.items():
136
- name_id = name.replace("/", "_")
137
- with tfutil.absolute_name_scope("Autosummary/" + name_id):
138
- moments = tf.add_n(vars_list)
139
- moments /= moments[0]
140
- with tf.control_dependencies([moments]): # read before resetting
141
- reset_ops = [tf.assign(var, tf.zeros(3, dtype=_dtype)) for var in vars_list]
142
- with tf.name_scope(None), tf.control_dependencies(reset_ops): # reset before reporting
143
- mean = moments[1]
144
- std = tf.sqrt(moments[2] - tf.square(moments[1]))
145
- tf.summary.scalar(name, mean)
146
- if enable_custom_scalars:
147
- tf.summary.scalar("xCustomScalars/" + name + "/margin_lo", mean - std)
148
- tf.summary.scalar("xCustomScalars/" + name + "/margin_hi", mean + std)
149
-
150
- # Setup layout for custom scalars.
151
- layout = None
152
- if enable_custom_scalars:
153
- cat_dict = OrderedDict()
154
- for series_name in sorted(_vars.keys()):
155
- p = series_name.split("/")
156
- cat = p[0] if len(p) >= 2 else ""
157
- chart = "/".join(p[1:-1]) if len(p) >= 3 else p[-1]
158
- if cat not in cat_dict:
159
- cat_dict[cat] = OrderedDict()
160
- if chart not in cat_dict[cat]:
161
- cat_dict[cat][chart] = []
162
- cat_dict[cat][chart].append(series_name)
163
- categories = []
164
- for cat_name, chart_dict in cat_dict.items():
165
- charts = []
166
- for chart_name, series_names in chart_dict.items():
167
- series = []
168
- for series_name in series_names:
169
- series.append(layout_pb2.MarginChartContent.Series(
170
- value=series_name,
171
- lower="xCustomScalars/" + series_name + "/margin_lo",
172
- upper="xCustomScalars/" + series_name + "/margin_hi"))
173
- margin = layout_pb2.MarginChartContent(series=series)
174
- charts.append(layout_pb2.Chart(title=chart_name, margin=margin))
175
- categories.append(layout_pb2.Category(title=cat_name, chart=charts))
176
- layout = summary_lib.custom_scalar_pb(layout_pb2.Layout(category=categories))
177
- return layout
178
-
179
- def save_summaries(file_writer, global_step=None):
180
- """Call FileWriter.add_summary() with all summaries in the default graph,
181
- automatically finalizing and merging them on the first call.
182
- """
183
- global _merge_op
184
- tfutil.assert_tf_initialized()
185
-
186
- if _merge_op is None:
187
- layout = finalize_autosummaries()
188
- if layout is not None:
189
- file_writer.add_summary(layout)
190
- with tf.device(None), tf.control_dependencies(None):
191
- _merge_op = tf.summary.merge_all()
192
-
193
- file_writer.add_summary(_merge_op.eval(), global_step)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/dnnlib/tflib/custom_ops.py DELETED
@@ -1,171 +0,0 @@
1
- # Copyright (c) SenseTime Research. All rights reserved.
2
-
3
- # Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
4
- #
5
- # This work is made available under the Nvidia Source Code License-NC.
6
- # To view a copy of this license, visit
7
- # https://nvlabs.github.io/stylegan2/license.html
8
-
9
- """TensorFlow custom ops builder.
10
- """
11
-
12
- import os
13
- import re
14
- import uuid
15
- import hashlib
16
- import tempfile
17
- import shutil
18
- import tensorflow as tf
19
- from tensorflow.python.client import device_lib # pylint: disable=no-name-in-module
20
-
21
- #----------------------------------------------------------------------------
22
- # Global options.
23
-
24
- cuda_cache_path = os.path.join(os.path.dirname(__file__), '_cudacache')
25
- cuda_cache_version_tag = 'v1'
26
- do_not_hash_included_headers = False # Speed up compilation by assuming that headers included by the CUDA code never change. Unsafe!
27
- verbose = True # Print status messages to stdout.
28
-
29
- compiler_bindir_search_path = [
30
- 'C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/VC/Tools/MSVC/14.14.26428/bin/Hostx64/x64',
31
- 'C:/Program Files (x86)/Microsoft Visual Studio/2019/Community/VC/Tools/MSVC/14.23.28105/bin/Hostx64/x64',
32
- 'C:/Program Files (x86)/Microsoft Visual Studio 14.0/vc/bin',
33
- ]
34
-
35
- #----------------------------------------------------------------------------
36
- # Internal helper funcs.
37
-
38
- def _find_compiler_bindir():
39
- for compiler_path in compiler_bindir_search_path:
40
- if os.path.isdir(compiler_path):
41
- return compiler_path
42
- return None
43
-
44
- def _get_compute_cap(device):
45
- caps_str = device.physical_device_desc
46
- m = re.search('compute capability: (\\d+).(\\d+)', caps_str)
47
- major = m.group(1)
48
- minor = m.group(2)
49
- return (major, minor)
50
-
51
- def _get_cuda_gpu_arch_string():
52
- gpus = [x for x in device_lib.list_local_devices() if x.device_type == 'GPU']
53
- if len(gpus) == 0:
54
- raise RuntimeError('No GPU devices found')
55
- (major, minor) = _get_compute_cap(gpus[0])
56
- return 'sm_%s%s' % (major, minor)
57
-
58
- def _run_cmd(cmd):
59
- with os.popen(cmd) as pipe:
60
- output = pipe.read()
61
- status = pipe.close()
62
- if status is not None:
63
- raise RuntimeError('NVCC returned an error. See below for full command line and output log:\n\n%s\n\n%s' % (cmd, output))
64
-
65
- def _prepare_nvcc_cli(opts):
66
- cmd = 'nvcc ' + opts.strip()
67
- cmd += ' --disable-warnings'
68
- cmd += ' --include-path "%s"' % tf.sysconfig.get_include()
69
- cmd += ' --include-path "%s"' % os.path.join(tf.sysconfig.get_include(), 'external', 'protobuf_archive', 'src')
70
- cmd += ' --include-path "%s"' % os.path.join(tf.sysconfig.get_include(), 'external', 'com_google_absl')
71
- cmd += ' --include-path "%s"' % os.path.join(tf.sysconfig.get_include(), 'external', 'eigen_archive')
72
-
73
- compiler_bindir = _find_compiler_bindir()
74
- if compiler_bindir is None:
75
- # Require that _find_compiler_bindir succeeds on Windows. Allow
76
- # nvcc to use whatever is the default on Linux.
77
- if os.name == 'nt':
78
- raise RuntimeError('Could not find MSVC/GCC/CLANG installation on this computer. Check compiler_bindir_search_path list in "%s".' % __file__)
79
- else:
80
- cmd += ' --compiler-bindir "%s"' % compiler_bindir
81
- cmd += ' 2>&1'
82
- return cmd
83
-
84
- #----------------------------------------------------------------------------
85
- # Main entry point.
86
-
87
- _plugin_cache = dict()
88
-
89
- def get_plugin(cuda_file):
90
- cuda_file_base = os.path.basename(cuda_file)
91
- cuda_file_name, cuda_file_ext = os.path.splitext(cuda_file_base)
92
-
93
- # Already in cache?
94
- if cuda_file in _plugin_cache:
95
- return _plugin_cache[cuda_file]
96
-
97
- # Setup plugin.
98
- if verbose:
99
- print('Setting up TensorFlow plugin "%s": ' % cuda_file_base, end='', flush=True)
100
- try:
101
- # Hash CUDA source.
102
- md5 = hashlib.md5()
103
- with open(cuda_file, 'rb') as f:
104
- md5.update(f.read())
105
- md5.update(b'\n')
106
-
107
- # Hash headers included by the CUDA code by running it through the preprocessor.
108
- if not do_not_hash_included_headers:
109
- if verbose:
110
- print('Preprocessing... ', end='', flush=True)
111
- with tempfile.TemporaryDirectory() as tmp_dir:
112
- tmp_file = os.path.join(tmp_dir, cuda_file_name + '_tmp' + cuda_file_ext)
113
- _run_cmd(_prepare_nvcc_cli('"%s" --preprocess -o "%s" --keep --keep-dir "%s"' % (cuda_file, tmp_file, tmp_dir)))
114
- with open(tmp_file, 'rb') as f:
115
- bad_file_str = ('"' + cuda_file.replace('\\', '/') + '"').encode('utf-8') # __FILE__ in error check macros
116
- good_file_str = ('"' + cuda_file_base + '"').encode('utf-8')
117
- for ln in f:
118
- if not ln.startswith(b'# ') and not ln.startswith(b'#line '): # ignore line number pragmas
119
- ln = ln.replace(bad_file_str, good_file_str)
120
- md5.update(ln)
121
- md5.update(b'\n')
122
-
123
- # Select compiler options.
124
- compile_opts = ''
125
- if os.name == 'nt':
126
- compile_opts += '"%s"' % os.path.join(tf.sysconfig.get_lib(), 'python', '_pywrap_tensorflow_internal.lib')
127
- elif os.name == 'posix':
128
- compile_opts += '"%s"' % os.path.join(tf.sysconfig.get_lib(), 'python', '_pywrap_tensorflow_internal.so')
129
- compile_opts += ' --compiler-options \'-fPIC -D_GLIBCXX_USE_CXX11_ABI=0\''
130
- else:
131
- assert False # not Windows or Linux, w00t?
132
- compile_opts += ' --gpu-architecture=%s' % _get_cuda_gpu_arch_string()
133
- compile_opts += ' --use_fast_math'
134
- nvcc_cmd = _prepare_nvcc_cli(compile_opts)
135
-
136
- # Hash build configuration.
137
- md5.update(('nvcc_cmd: ' + nvcc_cmd).encode('utf-8') + b'\n')
138
- md5.update(('tf.VERSION: ' + tf.VERSION).encode('utf-8') + b'\n')
139
- md5.update(('cuda_cache_version_tag: ' + cuda_cache_version_tag).encode('utf-8') + b'\n')
140
-
141
- # Compile if not already compiled.
142
- bin_file_ext = '.dll' if os.name == 'nt' else '.so'
143
- bin_file = os.path.join(cuda_cache_path, cuda_file_name + '_' + md5.hexdigest() + bin_file_ext)
144
- if not os.path.isfile(bin_file):
145
- if verbose:
146
- print('Compiling... ', end='', flush=True)
147
- with tempfile.TemporaryDirectory() as tmp_dir:
148
- tmp_file = os.path.join(tmp_dir, cuda_file_name + '_tmp' + bin_file_ext)
149
- _run_cmd(nvcc_cmd + ' "%s" --shared -o "%s" --keep --keep-dir "%s"' % (cuda_file, tmp_file, tmp_dir))
150
- os.makedirs(cuda_cache_path, exist_ok=True)
151
- intermediate_file = os.path.join(cuda_cache_path, cuda_file_name + '_' + uuid.uuid4().hex + '_tmp' + bin_file_ext)
152
- shutil.copyfile(tmp_file, intermediate_file)
153
- os.rename(intermediate_file, bin_file) # atomic
154
-
155
- # Load.
156
- if verbose:
157
- print('Loading... ', end='', flush=True)
158
- plugin = tf.load_op_library(bin_file)
159
-
160
- # Add to cache.
161
- _plugin_cache[cuda_file] = plugin
162
- if verbose:
163
- print('Done.', flush=True)
164
- return plugin
165
-
166
- except:
167
- if verbose:
168
- print('Failed!', flush=True)
169
- raise
170
-
171
- #----------------------------------------------------------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/dnnlib/tflib/network.py DELETED
@@ -1,592 +0,0 @@
1
- # Copyright (c) SenseTime Research. All rights reserved.
2
-
3
- # Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
4
- #
5
- # This work is made available under the Nvidia Source Code License-NC.
6
- # To view a copy of this license, visit
7
- # https://nvlabs.github.io/stylegan2/license.html
8
-
9
- """Helper for managing networks."""
10
-
11
- import types
12
- import inspect
13
- import re
14
- import uuid
15
- import sys
16
- import numpy as np
17
- import tensorflow as tf
18
-
19
- from collections import OrderedDict
20
- from typing import Any, List, Tuple, Union
21
-
22
- from . import tfutil
23
- from .. import util
24
-
25
- from .tfutil import TfExpression, TfExpressionEx
26
-
27
- _import_handlers = [] # Custom import handlers for dealing with legacy data in pickle import.
28
- _import_module_src = dict() # Source code for temporary modules created during pickle import.
29
-
30
-
31
- def import_handler(handler_func):
32
- """Function decorator for declaring custom import handlers."""
33
- _import_handlers.append(handler_func)
34
- return handler_func
35
-
36
-
37
- class Network:
38
- """Generic network abstraction.
39
-
40
- Acts as a convenience wrapper for a parameterized network construction
41
- function, providing several utility methods and convenient access to
42
- the inputs/outputs/weights.
43
-
44
- Network objects can be safely pickled and unpickled for long-term
45
- archival purposes. The pickling works reliably as long as the underlying
46
- network construction function is defined in a standalone Python module
47
- that has no side effects or application-specific imports.
48
-
49
- Args:
50
- name: Network name. Used to select TensorFlow name and variable scopes.
51
- func_name: Fully qualified name of the underlying network construction function, or a top-level function object.
52
- static_kwargs: Keyword arguments to be passed in to the network construction function.
53
-
54
- Attributes:
55
- name: User-specified name, defaults to build func name if None.
56
- scope: Unique TensorFlow scope containing template graph and variables, derived from the user-specified name.
57
- static_kwargs: Arguments passed to the user-supplied build func.
58
- components: Container for sub-networks. Passed to the build func, and retained between calls.
59
- num_inputs: Number of input tensors.
60
- num_outputs: Number of output tensors.
61
- input_shapes: Input tensor shapes (NC or NCHW), including minibatch dimension.
62
- output_shapes: Output tensor shapes (NC or NCHW), including minibatch dimension.
63
- input_shape: Short-hand for input_shapes[0].
64
- output_shape: Short-hand for output_shapes[0].
65
- input_templates: Input placeholders in the template graph.
66
- output_templates: Output tensors in the template graph.
67
- input_names: Name string for each input.
68
- output_names: Name string for each output.
69
- own_vars: Variables defined by this network (local_name => var), excluding sub-networks.
70
- vars: All variables (local_name => var).
71
- trainables: All trainable variables (local_name => var).
72
- var_global_to_local: Mapping from variable global names to local names.
73
- """
74
-
75
- def __init__(self, name: str = None, func_name: Any = None, **static_kwargs):
76
- tfutil.assert_tf_initialized()
77
- assert isinstance(name, str) or name is None
78
- assert func_name is not None
79
- assert isinstance(func_name, str) or util.is_top_level_function(func_name)
80
- assert util.is_pickleable(static_kwargs)
81
-
82
- self._init_fields()
83
- self.name = name
84
- self.static_kwargs = util.EasyDict(static_kwargs)
85
-
86
- # Locate the user-specified network build function.
87
- if util.is_top_level_function(func_name):
88
- func_name = util.get_top_level_function_name(func_name)
89
- module, self._build_func_name = util.get_module_from_obj_name(func_name)
90
- self._build_func = util.get_obj_from_module(module, self._build_func_name)
91
- assert callable(self._build_func)
92
-
93
- # Dig up source code for the module containing the build function.
94
- self._build_module_src = _import_module_src.get(module, None)
95
- if self._build_module_src is None:
96
- self._build_module_src = inspect.getsource(module)
97
-
98
- # Init TensorFlow graph.
99
- self._init_graph()
100
- self.reset_own_vars()
101
-
102
- def _init_fields(self) -> None:
103
- self.name = None
104
- self.scope = None
105
- self.static_kwargs = util.EasyDict()
106
- self.components = util.EasyDict()
107
- self.num_inputs = 0
108
- self.num_outputs = 0
109
- self.input_shapes = [[]]
110
- self.output_shapes = [[]]
111
- self.input_shape = []
112
- self.output_shape = []
113
- self.input_templates = []
114
- self.output_templates = []
115
- self.input_names = []
116
- self.output_names = []
117
- self.own_vars = OrderedDict()
118
- self.vars = OrderedDict()
119
- self.trainables = OrderedDict()
120
- self.var_global_to_local = OrderedDict()
121
-
122
- self._build_func = None # User-supplied build function that constructs the network.
123
- self._build_func_name = None # Name of the build function.
124
- self._build_module_src = None # Full source code of the module containing the build function.
125
- self._run_cache = dict() # Cached graph data for Network.run().
126
-
127
- def _init_graph(self) -> None:
128
- # Collect inputs.
129
- self.input_names = []
130
-
131
- for param in inspect.signature(self._build_func).parameters.values():
132
- if param.kind == param.POSITIONAL_OR_KEYWORD and param.default is param.empty:
133
- self.input_names.append(param.name)
134
-
135
- self.num_inputs = len(self.input_names)
136
- assert self.num_inputs >= 1
137
-
138
- # Choose name and scope.
139
- if self.name is None:
140
- self.name = self._build_func_name
141
- assert re.match("^[A-Za-z0-9_.\\-]*$", self.name)
142
- with tf.name_scope(None):
143
- self.scope = tf.get_default_graph().unique_name(self.name, mark_as_used=True)
144
-
145
- # Finalize build func kwargs.
146
- build_kwargs = dict(self.static_kwargs)
147
- build_kwargs["is_template_graph"] = True
148
- build_kwargs["components"] = self.components
149
-
150
- # Build template graph.
151
- with tfutil.absolute_variable_scope(self.scope, reuse=False), tfutil.absolute_name_scope(self.scope): # ignore surrounding scopes
152
- assert tf.get_variable_scope().name == self.scope
153
- assert tf.get_default_graph().get_name_scope() == self.scope
154
- with tf.control_dependencies(None): # ignore surrounding control dependencies
155
- self.input_templates = [tf.placeholder(tf.float32, name=name) for name in self.input_names]
156
- out_expr = self._build_func(*self.input_templates, **build_kwargs)
157
-
158
- # Collect outputs.
159
- assert tfutil.is_tf_expression(out_expr) or isinstance(out_expr, tuple)
160
- self.output_templates = [out_expr] if tfutil.is_tf_expression(out_expr) else list(out_expr)
161
- self.num_outputs = len(self.output_templates)
162
- assert self.num_outputs >= 1
163
- assert all(tfutil.is_tf_expression(t) for t in self.output_templates)
164
-
165
- # Perform sanity checks.
166
- if any(t.shape.ndims is None for t in self.input_templates):
167
- raise ValueError("Network input shapes not defined. Please call x.set_shape() for each input.")
168
- if any(t.shape.ndims is None for t in self.output_templates):
169
- raise ValueError("Network output shapes not defined. Please call x.set_shape() where applicable.")
170
- if any(not isinstance(comp, Network) for comp in self.components.values()):
171
- raise ValueError("Components of a Network must be Networks themselves.")
172
- if len(self.components) != len(set(comp.name for comp in self.components.values())):
173
- raise ValueError("Components of a Network must have unique names.")
174
-
175
- # List inputs and outputs.
176
- self.input_shapes = [t.shape.as_list() for t in self.input_templates]
177
- self.output_shapes = [t.shape.as_list() for t in self.output_templates]
178
- self.input_shape = self.input_shapes[0]
179
- self.output_shape = self.output_shapes[0]
180
- self.output_names = [t.name.split("/")[-1].split(":")[0] for t in self.output_templates]
181
-
182
- # List variables.
183
- self.own_vars = OrderedDict((var.name[len(self.scope) + 1:].split(":")[0], var) for var in tf.global_variables(self.scope + "/"))
184
- self.vars = OrderedDict(self.own_vars)
185
- self.vars.update((comp.name + "/" + name, var) for comp in self.components.values() for name, var in comp.vars.items())
186
- self.trainables = OrderedDict((name, var) for name, var in self.vars.items() if var.trainable)
187
- self.var_global_to_local = OrderedDict((var.name.split(":")[0], name) for name, var in self.vars.items())
188
-
189
- def reset_own_vars(self) -> None:
190
- """Re-initialize all variables of this network, excluding sub-networks."""
191
- tfutil.run([var.initializer for var in self.own_vars.values()])
192
-
193
- def reset_vars(self) -> None:
194
- """Re-initialize all variables of this network, including sub-networks."""
195
- tfutil.run([var.initializer for var in self.vars.values()])
196
-
197
- def reset_trainables(self) -> None:
198
- """Re-initialize all trainable variables of this network, including sub-networks."""
199
- tfutil.run([var.initializer for var in self.trainables.values()])
200
-
201
- def get_output_for(self, *in_expr: TfExpression, return_as_list: bool = False, **dynamic_kwargs) -> Union[TfExpression, List[TfExpression]]:
202
- """Construct TensorFlow expression(s) for the output(s) of this network, given the input expression(s)."""
203
- assert len(in_expr) == self.num_inputs
204
- assert not all(expr is None for expr in in_expr)
205
-
206
- # Finalize build func kwargs.
207
- build_kwargs = dict(self.static_kwargs)
208
- build_kwargs.update(dynamic_kwargs)
209
- build_kwargs["is_template_graph"] = False
210
- build_kwargs["components"] = self.components
211
-
212
- # Build TensorFlow graph to evaluate the network.
213
- with tfutil.absolute_variable_scope(self.scope, reuse=True), tf.name_scope(self.name):
214
- assert tf.get_variable_scope().name == self.scope
215
- valid_inputs = [expr for expr in in_expr if expr is not None]
216
- final_inputs = []
217
- for expr, name, shape in zip(in_expr, self.input_names, self.input_shapes):
218
- if expr is not None:
219
- expr = tf.identity(expr, name=name)
220
- else:
221
- expr = tf.zeros([tf.shape(valid_inputs[0])[0]] + shape[1:], name=name)
222
- final_inputs.append(expr)
223
- out_expr = self._build_func(*final_inputs, **build_kwargs)
224
-
225
- # Propagate input shapes back to the user-specified expressions.
226
- for expr, final in zip(in_expr, final_inputs):
227
- if isinstance(expr, tf.Tensor):
228
- expr.set_shape(final.shape)
229
-
230
- # Express outputs in the desired format.
231
- assert tfutil.is_tf_expression(out_expr) or isinstance(out_expr, tuple)
232
- if return_as_list:
233
- out_expr = [out_expr] if tfutil.is_tf_expression(out_expr) else list(out_expr)
234
- return out_expr
235
-
236
- def get_var_local_name(self, var_or_global_name: Union[TfExpression, str]) -> str:
237
- """Get the local name of a given variable, without any surrounding name scopes."""
238
- assert tfutil.is_tf_expression(var_or_global_name) or isinstance(var_or_global_name, str)
239
- global_name = var_or_global_name if isinstance(var_or_global_name, str) else var_or_global_name.name
240
- return self.var_global_to_local[global_name]
241
-
242
- def find_var(self, var_or_local_name: Union[TfExpression, str]) -> TfExpression:
243
- """Find variable by local or global name."""
244
- assert tfutil.is_tf_expression(var_or_local_name) or isinstance(var_or_local_name, str)
245
- return self.vars[var_or_local_name] if isinstance(var_or_local_name, str) else var_or_local_name
246
-
247
- def get_var(self, var_or_local_name: Union[TfExpression, str]) -> np.ndarray:
248
- """Get the value of a given variable as NumPy array.
249
- Note: This method is very inefficient -- prefer to use tflib.run(list_of_vars) whenever possible."""
250
- return self.find_var(var_or_local_name).eval()
251
-
252
- def set_var(self, var_or_local_name: Union[TfExpression, str], new_value: Union[int, float, np.ndarray]) -> None:
253
- """Set the value of a given variable based on the given NumPy array.
254
- Note: This method is very inefficient -- prefer to use tflib.set_vars() whenever possible."""
255
- tfutil.set_vars({self.find_var(var_or_local_name): new_value})
256
-
257
- def __getstate__(self) -> dict:
258
- """Pickle export."""
259
- state = dict()
260
- state["version"] = 4
261
- state["name"] = self.name
262
- state["static_kwargs"] = dict(self.static_kwargs)
263
- state["components"] = dict(self.components)
264
- state["build_module_src"] = self._build_module_src
265
- state["build_func_name"] = self._build_func_name
266
- state["variables"] = list(zip(self.own_vars.keys(), tfutil.run(list(self.own_vars.values()))))
267
- return state
268
-
269
- def __setstate__(self, state: dict) -> None:
270
- """Pickle import."""
271
- # pylint: disable=attribute-defined-outside-init
272
- tfutil.assert_tf_initialized()
273
- self._init_fields()
274
-
275
- # Execute custom import handlers.
276
- for handler in _import_handlers:
277
- state = handler(state)
278
-
279
- # Set basic fields.
280
- assert state["version"] in [2, 3, 4]
281
- self.name = state["name"]
282
- self.static_kwargs = util.EasyDict(state["static_kwargs"])
283
- self.components = util.EasyDict(state.get("components", {}))
284
- self._build_module_src = state["build_module_src"]
285
- self._build_func_name = state["build_func_name"]
286
-
287
- # Create temporary module from the imported source code.
288
- module_name = "_tflib_network_import_" + uuid.uuid4().hex
289
- module = types.ModuleType(module_name)
290
- sys.modules[module_name] = module
291
- _import_module_src[module] = self._build_module_src
292
- exec(self._build_module_src, module.__dict__) # pylint: disable=exec-used
293
-
294
- # Locate network build function in the temporary module.
295
- self._build_func = util.get_obj_from_module(module, self._build_func_name)
296
- assert callable(self._build_func)
297
-
298
- # Init TensorFlow graph.
299
- self._init_graph()
300
- self.reset_own_vars()
301
- tfutil.set_vars({self.find_var(name): value for name, value in state["variables"]})
302
-
303
- def clone(self, name: str = None, **new_static_kwargs) -> "Network":
304
- """Create a clone of this network with its own copy of the variables."""
305
- # pylint: disable=protected-access
306
- net = object.__new__(Network)
307
- net._init_fields()
308
- net.name = name if name is not None else self.name
309
- net.static_kwargs = util.EasyDict(self.static_kwargs)
310
- net.static_kwargs.update(new_static_kwargs)
311
- net._build_module_src = self._build_module_src
312
- net._build_func_name = self._build_func_name
313
- net._build_func = self._build_func
314
- net._init_graph()
315
- net.copy_vars_from(self)
316
- return net
317
-
318
- def copy_own_vars_from(self, src_net: "Network") -> None:
319
- """Copy the values of all variables from the given network, excluding sub-networks."""
320
- names = [name for name in self.own_vars.keys() if name in src_net.own_vars]
321
- tfutil.set_vars(tfutil.run({self.vars[name]: src_net.vars[name] for name in names}))
322
-
323
- def copy_vars_from(self, src_net: "Network") -> None:
324
- """Copy the values of all variables from the given network, including sub-networks."""
325
- names = [name for name in self.vars.keys() if name in src_net.vars]
326
- tfutil.set_vars(tfutil.run({self.vars[name]: src_net.vars[name] for name in names}))
327
-
328
- def copy_trainables_from(self, src_net: "Network") -> None:
329
- """Copy the values of all trainable variables from the given network, including sub-networks."""
330
- names = [name for name in self.trainables.keys() if name in src_net.trainables]
331
- tfutil.set_vars(tfutil.run({self.vars[name]: src_net.vars[name] for name in names}))
332
-
333
- def convert(self, new_func_name: str, new_name: str = None, **new_static_kwargs) -> "Network":
334
- """Create new network with the given parameters, and copy all variables from this network."""
335
- if new_name is None:
336
- new_name = self.name
337
- static_kwargs = dict(self.static_kwargs)
338
- static_kwargs.update(new_static_kwargs)
339
- net = Network(name=new_name, func_name=new_func_name, **static_kwargs)
340
- net.copy_vars_from(self)
341
- return net
342
-
343
- def setup_as_moving_average_of(self, src_net: "Network", beta: TfExpressionEx = 0.99, beta_nontrainable: TfExpressionEx = 0.0) -> tf.Operation:
344
- """Construct a TensorFlow op that updates the variables of this network
345
- to be slightly closer to those of the given network."""
346
- with tfutil.absolute_name_scope(self.scope + "/_MovingAvg"):
347
- ops = []
348
- for name, var in self.vars.items():
349
- if name in src_net.vars:
350
- cur_beta = beta if name in self.trainables else beta_nontrainable
351
- new_value = tfutil.lerp(src_net.vars[name], var, cur_beta)
352
- ops.append(var.assign(new_value))
353
- return tf.group(*ops)
354
-
355
- def run(self,
356
- *in_arrays: Tuple[Union[np.ndarray, None], ...],
357
- input_transform: dict = None,
358
- output_transform: dict = None,
359
- return_as_list: bool = False,
360
- print_progress: bool = False,
361
- minibatch_size: int = None,
362
- num_gpus: int = 1,
363
- assume_frozen: bool = False,
364
- **dynamic_kwargs) -> Union[np.ndarray, Tuple[np.ndarray, ...], List[np.ndarray]]:
365
- """Run this network for the given NumPy array(s), and return the output(s) as NumPy array(s).
366
-
367
- Args:
368
- input_transform: A dict specifying a custom transformation to be applied to the input tensor(s) before evaluating the network.
369
- The dict must contain a 'func' field that points to a top-level function. The function is called with the input
370
- TensorFlow expression(s) as positional arguments. Any remaining fields of the dict will be passed in as kwargs.
371
- output_transform: A dict specifying a custom transformation to be applied to the output tensor(s) after evaluating the network.
372
- The dict must contain a 'func' field that points to a top-level function. The function is called with the output
373
- TensorFlow expression(s) as positional arguments. Any remaining fields of the dict will be passed in as kwargs.
374
- return_as_list: True = return a list of NumPy arrays, False = return a single NumPy array, or a tuple if there are multiple outputs.
375
- print_progress: Print progress to the console? Useful for very large input arrays.
376
- minibatch_size: Maximum minibatch size to use, None = disable batching.
377
- num_gpus: Number of GPUs to use.
378
- assume_frozen: Improve multi-GPU performance by assuming that the trainable parameters will remain changed between calls.
379
- dynamic_kwargs: Additional keyword arguments to be passed into the network build function.
380
- """
381
- assert len(in_arrays) == self.num_inputs
382
- assert not all(arr is None for arr in in_arrays)
383
- assert input_transform is None or util.is_top_level_function(input_transform["func"])
384
- assert output_transform is None or util.is_top_level_function(output_transform["func"])
385
- output_transform, dynamic_kwargs = _handle_legacy_output_transforms(output_transform, dynamic_kwargs)
386
- num_items = in_arrays[0].shape[0]
387
- if minibatch_size is None:
388
- minibatch_size = num_items
389
-
390
- # Construct unique hash key from all arguments that affect the TensorFlow graph.
391
- key = dict(input_transform=input_transform, output_transform=output_transform, num_gpus=num_gpus, assume_frozen=assume_frozen, dynamic_kwargs=dynamic_kwargs)
392
- def unwind_key(obj):
393
- if isinstance(obj, dict):
394
- return [(key, unwind_key(value)) for key, value in sorted(obj.items())]
395
- if callable(obj):
396
- return util.get_top_level_function_name(obj)
397
- return obj
398
- key = repr(unwind_key(key))
399
-
400
- # Build graph.
401
- if key not in self._run_cache:
402
- with tfutil.absolute_name_scope(self.scope + "/_Run"), tf.control_dependencies(None):
403
- with tf.device("/cpu:0"):
404
- in_expr = [tf.placeholder(tf.float32, name=name) for name in self.input_names]
405
- in_split = list(zip(*[tf.split(x, num_gpus) for x in in_expr]))
406
-
407
- out_split = []
408
- for gpu in range(num_gpus):
409
- with tf.device("/gpu:%d" % gpu):
410
- net_gpu = self.clone() if assume_frozen else self
411
- in_gpu = in_split[gpu]
412
-
413
- if input_transform is not None:
414
- in_kwargs = dict(input_transform)
415
- in_gpu = in_kwargs.pop("func")(*in_gpu, **in_kwargs)
416
- in_gpu = [in_gpu] if tfutil.is_tf_expression(in_gpu) else list(in_gpu)
417
-
418
- assert len(in_gpu) == self.num_inputs
419
- out_gpu = net_gpu.get_output_for(*in_gpu, return_as_list=True, **dynamic_kwargs)
420
-
421
- if output_transform is not None:
422
- out_kwargs = dict(output_transform)
423
- out_gpu = out_kwargs.pop("func")(*out_gpu, **out_kwargs)
424
- out_gpu = [out_gpu] if tfutil.is_tf_expression(out_gpu) else list(out_gpu)
425
-
426
- assert len(out_gpu) == self.num_outputs
427
- out_split.append(out_gpu)
428
-
429
- with tf.device("/cpu:0"):
430
- out_expr = [tf.concat(outputs, axis=0) for outputs in zip(*out_split)]
431
- self._run_cache[key] = in_expr, out_expr
432
-
433
- # Run minibatches.
434
- in_expr, out_expr = self._run_cache[key]
435
- out_arrays = [np.empty([num_items] + expr.shape.as_list()[1:], expr.dtype.name) for expr in out_expr]
436
-
437
- for mb_begin in range(0, num_items, minibatch_size):
438
- if print_progress:
439
- print("\r%d / %d" % (mb_begin, num_items), end="")
440
-
441
- mb_end = min(mb_begin + minibatch_size, num_items)
442
- mb_num = mb_end - mb_begin
443
- mb_in = [src[mb_begin : mb_end] if src is not None else np.zeros([mb_num] + shape[1:]) for src, shape in zip(in_arrays, self.input_shapes)]
444
- mb_out = tf.get_default_session().run(out_expr, dict(zip(in_expr, mb_in)))
445
-
446
- for dst, src in zip(out_arrays, mb_out):
447
- dst[mb_begin: mb_end] = src
448
-
449
- # Done.
450
- if print_progress:
451
- print("\r%d / %d" % (num_items, num_items))
452
-
453
- if not return_as_list:
454
- out_arrays = out_arrays[0] if len(out_arrays) == 1 else tuple(out_arrays)
455
- return out_arrays
456
-
457
- def list_ops(self) -> List[TfExpression]:
458
- include_prefix = self.scope + "/"
459
- exclude_prefix = include_prefix + "_"
460
- ops = tf.get_default_graph().get_operations()
461
- ops = [op for op in ops if op.name.startswith(include_prefix)]
462
- ops = [op for op in ops if not op.name.startswith(exclude_prefix)]
463
- return ops
464
-
465
- def list_layers(self) -> List[Tuple[str, TfExpression, List[TfExpression]]]:
466
- """Returns a list of (layer_name, output_expr, trainable_vars) tuples corresponding to
467
- individual layers of the network. Mainly intended to be used for reporting."""
468
- layers = []
469
-
470
- def recurse(scope, parent_ops, parent_vars, level):
471
- # Ignore specific patterns.
472
- if any(p in scope for p in ["/Shape", "/strided_slice", "/Cast", "/concat", "/Assign"]):
473
- return
474
-
475
- # Filter ops and vars by scope.
476
- global_prefix = scope + "/"
477
- local_prefix = global_prefix[len(self.scope) + 1:]
478
- cur_ops = [op for op in parent_ops if op.name.startswith(global_prefix) or op.name == global_prefix[:-1]]
479
- cur_vars = [(name, var) for name, var in parent_vars if name.startswith(local_prefix) or name == local_prefix[:-1]]
480
- if not cur_ops and not cur_vars:
481
- return
482
-
483
- # Filter out all ops related to variables.
484
- for var in [op for op in cur_ops if op.type.startswith("Variable")]:
485
- var_prefix = var.name + "/"
486
- cur_ops = [op for op in cur_ops if not op.name.startswith(var_prefix)]
487
-
488
- # Scope does not contain ops as immediate children => recurse deeper.
489
- contains_direct_ops = any("/" not in op.name[len(global_prefix):] and op.type not in ["Identity", "Cast", "Transpose"] for op in cur_ops)
490
- if (level == 0 or not contains_direct_ops) and (len(cur_ops) + len(cur_vars)) > 1:
491
- visited = set()
492
- for rel_name in [op.name[len(global_prefix):] for op in cur_ops] + [name[len(local_prefix):] for name, _var in cur_vars]:
493
- token = rel_name.split("/")[0]
494
- if token not in visited:
495
- recurse(global_prefix + token, cur_ops, cur_vars, level + 1)
496
- visited.add(token)
497
- return
498
-
499
- # Report layer.
500
- layer_name = scope[len(self.scope) + 1:]
501
- layer_output = cur_ops[-1].outputs[0] if cur_ops else cur_vars[-1][1]
502
- layer_trainables = [var for _name, var in cur_vars if var.trainable]
503
- layers.append((layer_name, layer_output, layer_trainables))
504
-
505
- recurse(self.scope, self.list_ops(), list(self.vars.items()), 0)
506
- return layers
507
-
508
- def print_layers(self, title: str = None, hide_layers_with_no_params: bool = False) -> None:
509
- """Print a summary table of the network structure."""
510
- rows = [[title if title is not None else self.name, "Params", "OutputShape", "WeightShape"]]
511
- rows += [["---"] * 4]
512
- total_params = 0
513
-
514
- for layer_name, layer_output, layer_trainables in self.list_layers():
515
- num_params = sum(int(np.prod(var.shape.as_list())) for var in layer_trainables)
516
- weights = [var for var in layer_trainables if var.name.endswith("/weight:0")]
517
- weights.sort(key=lambda x: len(x.name))
518
- if len(weights) == 0 and len(layer_trainables) == 1:
519
- weights = layer_trainables
520
- total_params += num_params
521
-
522
- if not hide_layers_with_no_params or num_params != 0:
523
- num_params_str = str(num_params) if num_params > 0 else "-"
524
- output_shape_str = str(layer_output.shape)
525
- weight_shape_str = str(weights[0].shape) if len(weights) >= 1 else "-"
526
- rows += [[layer_name, num_params_str, output_shape_str, weight_shape_str]]
527
-
528
- rows += [["---"] * 4]
529
- rows += [["Total", str(total_params), "", ""]]
530
-
531
- widths = [max(len(cell) for cell in column) for column in zip(*rows)]
532
- print()
533
- for row in rows:
534
- print(" ".join(cell + " " * (width - len(cell)) for cell, width in zip(row, widths)))
535
- print()
536
-
537
- def setup_weight_histograms(self, title: str = None) -> None:
538
- """Construct summary ops to include histograms of all trainable parameters in TensorBoard."""
539
- if title is None:
540
- title = self.name
541
-
542
- with tf.name_scope(None), tf.device(None), tf.control_dependencies(None):
543
- for local_name, var in self.trainables.items():
544
- if "/" in local_name:
545
- p = local_name.split("/")
546
- name = title + "_" + p[-1] + "/" + "_".join(p[:-1])
547
- else:
548
- name = title + "_toplevel/" + local_name
549
-
550
- tf.summary.histogram(name, var)
551
-
552
- #----------------------------------------------------------------------------
553
- # Backwards-compatible emulation of legacy output transformation in Network.run().
554
-
555
- _print_legacy_warning = True
556
-
557
- def _handle_legacy_output_transforms(output_transform, dynamic_kwargs):
558
- global _print_legacy_warning
559
- legacy_kwargs = ["out_mul", "out_add", "out_shrink", "out_dtype"]
560
- if not any(kwarg in dynamic_kwargs for kwarg in legacy_kwargs):
561
- return output_transform, dynamic_kwargs
562
-
563
- if _print_legacy_warning:
564
- _print_legacy_warning = False
565
- print()
566
- print("WARNING: Old-style output transformations in Network.run() are deprecated.")
567
- print("Consider using 'output_transform=dict(func=tflib.convert_images_to_uint8)'")
568
- print("instead of 'out_mul=127.5, out_add=127.5, out_dtype=np.uint8'.")
569
- print()
570
- assert output_transform is None
571
-
572
- new_kwargs = dict(dynamic_kwargs)
573
- new_transform = {kwarg: new_kwargs.pop(kwarg) for kwarg in legacy_kwargs if kwarg in dynamic_kwargs}
574
- new_transform["func"] = _legacy_output_transform_func
575
- return new_transform, new_kwargs
576
-
577
- def _legacy_output_transform_func(*expr, out_mul=1.0, out_add=0.0, out_shrink=1, out_dtype=None):
578
- if out_mul != 1.0:
579
- expr = [x * out_mul for x in expr]
580
-
581
- if out_add != 0.0:
582
- expr = [x + out_add for x in expr]
583
-
584
- if out_shrink > 1:
585
- ksize = [1, 1, out_shrink, out_shrink]
586
- expr = [tf.nn.avg_pool(x, ksize=ksize, strides=ksize, padding="VALID", data_format="NCHW") for x in expr]
587
-
588
- if out_dtype is not None:
589
- if tf.as_dtype(out_dtype).is_integer:
590
- expr = [tf.round(x) for x in expr]
591
- expr = [tf.saturate_cast(x, out_dtype) for x in expr]
592
- return expr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/dnnlib/tflib/ops/__init__.py DELETED
@@ -1,9 +0,0 @@
1
- # Copyright (c) SenseTime Research. All rights reserved.
2
-
3
- # Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
4
- #
5
- # This work is made available under the Nvidia Source Code License-NC.
6
- # To view a copy of this license, visit
7
- # https://nvlabs.github.io/stylegan2/license.html
8
-
9
- # empty
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/dnnlib/tflib/ops/fused_bias_act.cu DELETED
@@ -1,190 +0,0 @@
1
- // Copyright (c) SenseTime Research. All rights reserved.
2
-
3
- // Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
4
- //
5
- // This work is made available under the Nvidia Source Code License-NC.
6
- // To view a copy of this license, visit
7
- // https://nvlabs.github.io/stylegan2/license.html
8
-
9
- #define EIGEN_USE_GPU
10
- #define __CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__
11
- #include "tensorflow/core/framework/op.h"
12
- #include "tensorflow/core/framework/op_kernel.h"
13
- #include "tensorflow/core/framework/shape_inference.h"
14
- #include <stdio.h>
15
-
16
- using namespace tensorflow;
17
- using namespace tensorflow::shape_inference;
18
-
19
- #define OP_CHECK_CUDA_ERROR(CTX, CUDA_CALL) do { cudaError_t err = CUDA_CALL; OP_REQUIRES(CTX, err == cudaSuccess, errors::Internal(cudaGetErrorName(err))); } while (false)
20
-
21
- //------------------------------------------------------------------------
22
- // CUDA kernel.
23
-
24
- template <class T>
25
- struct FusedBiasActKernelParams
26
- {
27
- const T* x; // [sizeX]
28
- const T* b; // [sizeB] or NULL
29
- const T* ref; // [sizeX] or NULL
30
- T* y; // [sizeX]
31
-
32
- int grad;
33
- int axis;
34
- int act;
35
- float alpha;
36
- float gain;
37
-
38
- int sizeX;
39
- int sizeB;
40
- int stepB;
41
- int loopX;
42
- };
43
-
44
- template <class T>
45
- static __global__ void FusedBiasActKernel(const FusedBiasActKernelParams<T> p)
46
- {
47
- const float expRange = 80.0f;
48
- const float halfExpRange = 40.0f;
49
- const float seluScale = 1.0507009873554804934193349852946f;
50
- const float seluAlpha = 1.6732632423543772848170429916717f;
51
-
52
- // Loop over elements.
53
- int xi = blockIdx.x * p.loopX * blockDim.x + threadIdx.x;
54
- for (int loopIdx = 0; loopIdx < p.loopX && xi < p.sizeX; loopIdx++, xi += blockDim.x)
55
- {
56
- // Load and apply bias.
57
- float x = (float)p.x[xi];
58
- if (p.b)
59
- x += (float)p.b[(xi / p.stepB) % p.sizeB];
60
- float ref = (p.ref) ? (float)p.ref[xi] : 0.0f;
61
- if (p.gain != 0.0f & p.act != 9)
62
- ref /= p.gain;
63
-
64
- // Evaluate activation func.
65
- float y;
66
- switch (p.act * 10 + p.grad)
67
- {
68
- // linear
69
- default:
70
- case 10: y = x; break;
71
- case 11: y = x; break;
72
- case 12: y = 0.0f; break;
73
-
74
- // relu
75
- case 20: y = (x > 0.0f) ? x : 0.0f; break;
76
- case 21: y = (ref > 0.0f) ? x : 0.0f; break;
77
- case 22: y = 0.0f; break;
78
-
79
- // lrelu
80
- case 30: y = (x > 0.0f) ? x : x * p.alpha; break;
81
- case 31: y = (ref > 0.0f) ? x : x * p.alpha; break;
82
- case 32: y = 0.0f; break;
83
-
84
- // tanh
85
- case 40: { float c = expf(x); float d = 1.0f / c; y = (x < -expRange) ? -1.0f : (x > expRange) ? 1.0f : (c - d) / (c + d); } break;
86
- case 41: y = x * (1.0f - ref * ref); break;
87
- case 42: y = x * (1.0f - ref * ref) * (-2.0f * ref); break;
88
-
89
- // sigmoid
90
- case 50: y = (x < -expRange) ? 0.0f : 1.0f / (expf(-x) + 1.0f); break;
91
- case 51: y = x * ref * (1.0f - ref); break;
92
- case 52: y = x * ref * (1.0f - ref) * (1.0f - 2.0f * ref); break;
93
-
94
- // elu
95
- case 60: y = (x >= 0.0f) ? x : expf(x) - 1.0f; break;
96
- case 61: y = (ref >= 0.0f) ? x : x * (ref + 1.0f); break;
97
- case 62: y = (ref >= 0.0f) ? 0.0f : x * (ref + 1.0f); break;
98
-
99
- // selu
100
- case 70: y = (x >= 0.0f) ? seluScale * x : (seluScale * seluAlpha) * (expf(x) - 1.0f); break;
101
- case 71: y = (ref >= 0.0f) ? x * seluScale : x * (ref + seluScale * seluAlpha); break;
102
- case 72: y = (ref >= 0.0f) ? 0.0f : x * (ref + seluScale * seluAlpha); break;
103
-
104
- // softplus
105
- case 80: y = (x > expRange) ? x : logf(expf(x) + 1.0f); break;
106
- case 81: y = x * (1.0f - expf(-ref)); break;
107
- case 82: { float c = expf(-ref); y = x * c * (1.0f - c); } break;
108
-
109
- // swish
110
- case 90: y = (x < -expRange) ? 0.0f : x / (expf(-x) + 1.0f); break;
111
- case 91: { float c = expf(ref); float d = c + 1.0f; y = (ref > halfExpRange) ? x : x * c * (ref + d) / (d * d); } break;
112
- case 92: { float c = expf(ref); float d = c + 1.0f; y = (ref > halfExpRange) ? 0.0f : x * c * (ref * (2.0f - d) + 2.0f * d) / (d * d * d); } break;
113
- }
114
-
115
- // Apply gain and store.
116
- p.y[xi] = (T)(y * p.gain);
117
- }
118
- }
119
-
120
- //------------------------------------------------------------------------
121
- // TensorFlow op.
122
-
123
- template <class T>
124
- struct FusedBiasActOp : public OpKernel
125
- {
126
- FusedBiasActKernelParams<T> m_attribs;
127
-
128
- FusedBiasActOp(OpKernelConstruction* ctx) : OpKernel(ctx)
129
- {
130
- memset(&m_attribs, 0, sizeof(m_attribs));
131
- OP_REQUIRES_OK(ctx, ctx->GetAttr("grad", &m_attribs.grad));
132
- OP_REQUIRES_OK(ctx, ctx->GetAttr("axis", &m_attribs.axis));
133
- OP_REQUIRES_OK(ctx, ctx->GetAttr("act", &m_attribs.act));
134
- OP_REQUIRES_OK(ctx, ctx->GetAttr("alpha", &m_attribs.alpha));
135
- OP_REQUIRES_OK(ctx, ctx->GetAttr("gain", &m_attribs.gain));
136
- OP_REQUIRES(ctx, m_attribs.grad >= 0, errors::InvalidArgument("grad must be non-negative"));
137
- OP_REQUIRES(ctx, m_attribs.axis >= 0, errors::InvalidArgument("axis must be non-negative"));
138
- OP_REQUIRES(ctx, m_attribs.act >= 0, errors::InvalidArgument("act must be non-negative"));
139
- }
140
-
141
- void Compute(OpKernelContext* ctx)
142
- {
143
- FusedBiasActKernelParams<T> p = m_attribs;
144
- cudaStream_t stream = ctx->eigen_device<Eigen::GpuDevice>().stream();
145
-
146
- const Tensor& x = ctx->input(0); // [...]
147
- const Tensor& b = ctx->input(1); // [sizeB] or [0]
148
- const Tensor& ref = ctx->input(2); // x.shape or [0]
149
- p.x = x.flat<T>().data();
150
- p.b = (b.NumElements()) ? b.flat<T>().data() : NULL;
151
- p.ref = (ref.NumElements()) ? ref.flat<T>().data() : NULL;
152
- OP_REQUIRES(ctx, b.NumElements() == 0 || m_attribs.axis < x.dims(), errors::InvalidArgument("axis out of bounds"));
153
- OP_REQUIRES(ctx, b.dims() == 1, errors::InvalidArgument("b must have rank 1"));
154
- OP_REQUIRES(ctx, b.NumElements() == 0 || b.NumElements() == x.dim_size(m_attribs.axis), errors::InvalidArgument("b has wrong number of elements"));
155
- OP_REQUIRES(ctx, ref.NumElements() == ((p.grad == 0) ? 0 : x.NumElements()), errors::InvalidArgument("ref has wrong number of elements"));
156
- OP_REQUIRES(ctx, x.NumElements() <= kint32max, errors::InvalidArgument("x is too large"));
157
-
158
- p.sizeX = (int)x.NumElements();
159
- p.sizeB = (int)b.NumElements();
160
- p.stepB = 1;
161
- for (int i = m_attribs.axis + 1; i < x.dims(); i++)
162
- p.stepB *= (int)x.dim_size(i);
163
-
164
- Tensor* y = NULL; // x.shape
165
- OP_REQUIRES_OK(ctx, ctx->allocate_output(0, x.shape(), &y));
166
- p.y = y->flat<T>().data();
167
-
168
- p.loopX = 4;
169
- int blockSize = 4 * 32;
170
- int gridSize = (p.sizeX - 1) / (p.loopX * blockSize) + 1;
171
- void* args[] = {&p};
172
- OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel((void*)FusedBiasActKernel<T>, gridSize, blockSize, args, 0, stream));
173
- }
174
- };
175
-
176
- REGISTER_OP("FusedBiasAct")
177
- .Input ("x: T")
178
- .Input ("b: T")
179
- .Input ("ref: T")
180
- .Output ("y: T")
181
- .Attr ("T: {float, half}")
182
- .Attr ("grad: int = 0")
183
- .Attr ("axis: int = 1")
184
- .Attr ("act: int = 0")
185
- .Attr ("alpha: float = 0.0")
186
- .Attr ("gain: float = 1.0");
187
- REGISTER_KERNEL_BUILDER(Name("FusedBiasAct").Device(DEVICE_GPU).TypeConstraint<float>("T"), FusedBiasActOp<float>);
188
- REGISTER_KERNEL_BUILDER(Name("FusedBiasAct").Device(DEVICE_GPU).TypeConstraint<Eigen::half>("T"), FusedBiasActOp<Eigen::half>);
189
-
190
- //------------------------------------------------------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/dnnlib/tflib/ops/fused_bias_act.py DELETED
@@ -1,198 +0,0 @@
1
- # Copyright (c) SenseTime Research. All rights reserved.
2
-
3
- # Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
4
- #
5
- # This work is made available under the Nvidia Source Code License-NC.
6
- # To view a copy of this license, visit
7
- # https://nvlabs.github.io/stylegan2/license.html
8
-
9
- """Custom TensorFlow ops for efficient bias and activation."""
10
-
11
- import os
12
- import numpy as np
13
- import tensorflow as tf
14
- from .. import custom_ops
15
- from ...util import EasyDict
16
-
17
- def _get_plugin():
18
- return custom_ops.get_plugin(os.path.splitext(__file__)[0] + '.cu')
19
-
20
- #----------------------------------------------------------------------------
21
-
22
- activation_funcs = {
23
- 'linear': EasyDict(func=lambda x, **_: x, def_alpha=None, def_gain=1.0, cuda_idx=1, ref='y', zero_2nd_grad=True),
24
- 'relu': EasyDict(func=lambda x, **_: tf.nn.relu(x), def_alpha=None, def_gain=np.sqrt(2), cuda_idx=2, ref='y', zero_2nd_grad=True),
25
- 'lrelu': EasyDict(func=lambda x, alpha, **_: tf.nn.leaky_relu(x, alpha), def_alpha=0.2, def_gain=np.sqrt(2), cuda_idx=3, ref='y', zero_2nd_grad=True),
26
- 'tanh': EasyDict(func=lambda x, **_: tf.nn.tanh(x), def_alpha=None, def_gain=1.0, cuda_idx=4, ref='y', zero_2nd_grad=False),
27
- 'sigmoid': EasyDict(func=lambda x, **_: tf.nn.sigmoid(x), def_alpha=None, def_gain=1.0, cuda_idx=5, ref='y', zero_2nd_grad=False),
28
- 'elu': EasyDict(func=lambda x, **_: tf.nn.elu(x), def_alpha=None, def_gain=1.0, cuda_idx=6, ref='y', zero_2nd_grad=False),
29
- 'selu': EasyDict(func=lambda x, **_: tf.nn.selu(x), def_alpha=None, def_gain=1.0, cuda_idx=7, ref='y', zero_2nd_grad=False),
30
- 'softplus': EasyDict(func=lambda x, **_: tf.nn.softplus(x), def_alpha=None, def_gain=1.0, cuda_idx=8, ref='y', zero_2nd_grad=False),
31
- 'swish': EasyDict(func=lambda x, **_: tf.nn.sigmoid(x) * x, def_alpha=None, def_gain=np.sqrt(2), cuda_idx=9, ref='x', zero_2nd_grad=False),
32
- }
33
-
34
- #----------------------------------------------------------------------------
35
-
36
- def fused_bias_act(x, b=None, axis=1, act='linear', alpha=None, gain=None, impl='cuda'):
37
- r"""Fused bias and activation function.
38
-
39
- Adds bias `b` to activation tensor `x`, evaluates activation function `act`,
40
- and scales the result by `gain`. Each of the steps is optional. In most cases,
41
- the fused op is considerably more efficient than performing the same calculation
42
- using standard TensorFlow ops. It supports first and second order gradients,
43
- but not third order gradients.
44
-
45
- Args:
46
- x: Input activation tensor. Can have any shape, but if `b` is defined, the
47
- dimension corresponding to `axis`, as well as the rank, must be known.
48
- b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type
49
- as `x`. The shape must be known, and it must match the dimension of `x`
50
- corresponding to `axis`.
51
- axis: The dimension in `x` corresponding to the elements of `b`.
52
- The value of `axis` is ignored if `b` is not specified.
53
- act: Name of the activation function to evaluate, or `"linear"` to disable.
54
- Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc.
55
- See `activation_funcs` for a full list. `None` is not allowed.
56
- alpha: Shape parameter for the activation function, or `None` to use the default.
57
- gain: Scaling factor for the output tensor, or `None` to use default.
58
- See `activation_funcs` for the default scaling of each activation function.
59
- If unsure, consider specifying `1.0`.
60
- impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
61
-
62
- Returns:
63
- Tensor of the same shape and datatype as `x`.
64
- """
65
-
66
- impl_dict = {
67
- 'ref': _fused_bias_act_ref,
68
- 'cuda': _fused_bias_act_cuda,
69
- }
70
- return impl_dict[impl](x=x, b=b, axis=axis, act=act, alpha=alpha, gain=gain)
71
-
72
- #----------------------------------------------------------------------------
73
-
74
- def _fused_bias_act_ref(x, b, axis, act, alpha, gain):
75
- """Slow reference implementation of `fused_bias_act()` using standard TensorFlow ops."""
76
-
77
- # Validate arguments.
78
- x = tf.convert_to_tensor(x)
79
- b = tf.convert_to_tensor(b) if b is not None else tf.constant([], dtype=x.dtype)
80
- act_spec = activation_funcs[act]
81
- assert b.shape.rank == 1 and (b.shape[0] == 0 or b.shape[0] == x.shape[axis])
82
- assert b.shape[0] == 0 or 0 <= axis < x.shape.rank
83
- if alpha is None:
84
- alpha = act_spec.def_alpha
85
- if gain is None:
86
- gain = act_spec.def_gain
87
-
88
- # Add bias.
89
- if b.shape[0] != 0:
90
- x += tf.reshape(b, [-1 if i == axis else 1 for i in range(x.shape.rank)])
91
-
92
- # Evaluate activation function.
93
- x = act_spec.func(x, alpha=alpha)
94
-
95
- # Scale by gain.
96
- if gain != 1:
97
- x *= gain
98
- return x
99
-
100
- #----------------------------------------------------------------------------
101
-
102
- def _fused_bias_act_cuda(x, b, axis, act, alpha, gain):
103
- """Fast CUDA implementation of `fused_bias_act()` using custom ops."""
104
-
105
- # Validate arguments.
106
- x = tf.convert_to_tensor(x)
107
- empty_tensor = tf.constant([], dtype=x.dtype)
108
- b = tf.convert_to_tensor(b) if b is not None else empty_tensor
109
- act_spec = activation_funcs[act]
110
- assert b.shape.rank == 1 and (b.shape[0] == 0 or b.shape[0] == x.shape[axis])
111
- assert b.shape[0] == 0 or 0 <= axis < x.shape.rank
112
- if alpha is None:
113
- alpha = act_spec.def_alpha
114
- if gain is None:
115
- gain = act_spec.def_gain
116
-
117
- # Special cases.
118
- if act == 'linear' and b is None and gain == 1.0:
119
- return x
120
- if act_spec.cuda_idx is None:
121
- return _fused_bias_act_ref(x=x, b=b, axis=axis, act=act, alpha=alpha, gain=gain)
122
-
123
- # CUDA kernel.
124
- cuda_kernel = _get_plugin().fused_bias_act
125
- cuda_kwargs = dict(axis=axis, act=act_spec.cuda_idx, alpha=alpha, gain=gain)
126
-
127
- # Forward pass: y = func(x, b).
128
- def func_y(x, b):
129
- y = cuda_kernel(x=x, b=b, ref=empty_tensor, grad=0, **cuda_kwargs)
130
- y.set_shape(x.shape)
131
- return y
132
-
133
- # Backward pass: dx, db = grad(dy, x, y)
134
- def grad_dx(dy, x, y):
135
- ref = {'x': x, 'y': y}[act_spec.ref]
136
- dx = cuda_kernel(x=dy, b=empty_tensor, ref=ref, grad=1, **cuda_kwargs)
137
- dx.set_shape(x.shape)
138
- return dx
139
- def grad_db(dx):
140
- if b.shape[0] == 0:
141
- return empty_tensor
142
- db = dx
143
- if axis < x.shape.rank - 1:
144
- db = tf.reduce_sum(db, list(range(axis + 1, x.shape.rank)))
145
- if axis > 0:
146
- db = tf.reduce_sum(db, list(range(axis)))
147
- db.set_shape(b.shape)
148
- return db
149
-
150
- # Second order gradients: d_dy, d_x = grad2(d_dx, d_db, x, y)
151
- def grad2_d_dy(d_dx, d_db, x, y):
152
- ref = {'x': x, 'y': y}[act_spec.ref]
153
- d_dy = cuda_kernel(x=d_dx, b=d_db, ref=ref, grad=1, **cuda_kwargs)
154
- d_dy.set_shape(x.shape)
155
- return d_dy
156
- def grad2_d_x(d_dx, d_db, x, y):
157
- ref = {'x': x, 'y': y}[act_spec.ref]
158
- d_x = cuda_kernel(x=d_dx, b=d_db, ref=ref, grad=2, **cuda_kwargs)
159
- d_x.set_shape(x.shape)
160
- return d_x
161
-
162
- # Fast version for piecewise-linear activation funcs.
163
- @tf.custom_gradient
164
- def func_zero_2nd_grad(x, b):
165
- y = func_y(x, b)
166
- @tf.custom_gradient
167
- def grad(dy):
168
- dx = grad_dx(dy, x, y)
169
- db = grad_db(dx)
170
- def grad2(d_dx, d_db):
171
- d_dy = grad2_d_dy(d_dx, d_db, x, y)
172
- return d_dy
173
- return (dx, db), grad2
174
- return y, grad
175
-
176
- # Slow version for general activation funcs.
177
- @tf.custom_gradient
178
- def func_nonzero_2nd_grad(x, b):
179
- y = func_y(x, b)
180
- def grad_wrap(dy):
181
- @tf.custom_gradient
182
- def grad_impl(dy, x):
183
- dx = grad_dx(dy, x, y)
184
- db = grad_db(dx)
185
- def grad2(d_dx, d_db):
186
- d_dy = grad2_d_dy(d_dx, d_db, x, y)
187
- d_x = grad2_d_x(d_dx, d_db, x, y)
188
- return d_dy, d_x
189
- return (dx, db), grad2
190
- return grad_impl(dy, x)
191
- return y, grad_wrap
192
-
193
- # Which version to use?
194
- if act_spec.zero_2nd_grad:
195
- return func_zero_2nd_grad(x, b)
196
- return func_nonzero_2nd_grad(x, b)
197
-
198
- #----------------------------------------------------------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/dnnlib/tflib/ops/upfirdn_2d.cu DELETED
@@ -1,328 +0,0 @@
1
- // Copyright (c) SenseTime Research. All rights reserved.
2
-
3
- // Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
4
- //
5
- // This work is made available under the Nvidia Source Code License-NC.
6
- // To view a copy of this license, visit
7
- // https://nvlabs.github.io/stylegan2/license.html
8
-
9
- #define EIGEN_USE_GPU
10
- #define __CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__
11
- #include "tensorflow/core/framework/op.h"
12
- #include "tensorflow/core/framework/op_kernel.h"
13
- #include "tensorflow/core/framework/shape_inference.h"
14
- #include <stdio.h>
15
-
16
- using namespace tensorflow;
17
- using namespace tensorflow::shape_inference;
18
-
19
- //------------------------------------------------------------------------
20
- // Helpers.
21
-
22
- #define OP_CHECK_CUDA_ERROR(CTX, CUDA_CALL) do { cudaError_t err = CUDA_CALL; OP_REQUIRES(CTX, err == cudaSuccess, errors::Internal(cudaGetErrorName(err))); } while (false)
23
-
24
- static __host__ __device__ __forceinline__ int floorDiv(int a, int b)
25
- {
26
- int c = a / b;
27
- if (c * b > a)
28
- c--;
29
- return c;
30
- }
31
-
32
- //------------------------------------------------------------------------
33
- // CUDA kernel params.
34
-
35
- template <class T>
36
- struct UpFirDn2DKernelParams
37
- {
38
- const T* x; // [majorDim, inH, inW, minorDim]
39
- const T* k; // [kernelH, kernelW]
40
- T* y; // [majorDim, outH, outW, minorDim]
41
-
42
- int upx;
43
- int upy;
44
- int downx;
45
- int downy;
46
- int padx0;
47
- int padx1;
48
- int pady0;
49
- int pady1;
50
-
51
- int majorDim;
52
- int inH;
53
- int inW;
54
- int minorDim;
55
- int kernelH;
56
- int kernelW;
57
- int outH;
58
- int outW;
59
- int loopMajor;
60
- int loopX;
61
- };
62
-
63
- //------------------------------------------------------------------------
64
- // General CUDA implementation for large filter kernels.
65
-
66
- template <class T>
67
- static __global__ void UpFirDn2DKernel_large(const UpFirDn2DKernelParams<T> p)
68
- {
69
- // Calculate thread index.
70
- int minorIdx = blockIdx.x * blockDim.x + threadIdx.x;
71
- int outY = minorIdx / p.minorDim;
72
- minorIdx -= outY * p.minorDim;
73
- int outXBase = blockIdx.y * p.loopX * blockDim.y + threadIdx.y;
74
- int majorIdxBase = blockIdx.z * p.loopMajor;
75
- if (outXBase >= p.outW || outY >= p.outH || majorIdxBase >= p.majorDim)
76
- return;
77
-
78
- // Setup Y receptive field.
79
- int midY = outY * p.downy + p.upy - 1 - p.pady0;
80
- int inY = min(max(floorDiv(midY, p.upy), 0), p.inH);
81
- int h = min(max(floorDiv(midY + p.kernelH, p.upy), 0), p.inH) - inY;
82
- int kernelY = midY + p.kernelH - (inY + 1) * p.upy;
83
-
84
- // Loop over majorDim and outX.
85
- for (int loopMajor = 0, majorIdx = majorIdxBase; loopMajor < p.loopMajor && majorIdx < p.majorDim; loopMajor++, majorIdx++)
86
- for (int loopX = 0, outX = outXBase; loopX < p.loopX && outX < p.outW; loopX++, outX += blockDim.y)
87
- {
88
- // Setup X receptive field.
89
- int midX = outX * p.downx + p.upx - 1 - p.padx0;
90
- int inX = min(max(floorDiv(midX, p.upx), 0), p.inW);
91
- int w = min(max(floorDiv(midX + p.kernelW, p.upx), 0), p.inW) - inX;
92
- int kernelX = midX + p.kernelW - (inX + 1) * p.upx;
93
-
94
- // Initialize pointers.
95
- const T* xp = &p.x[((majorIdx * p.inH + inY) * p.inW + inX) * p.minorDim + minorIdx];
96
- const T* kp = &p.k[kernelY * p.kernelW + kernelX];
97
- int xpx = p.minorDim;
98
- int kpx = -p.upx;
99
- int xpy = p.inW * p.minorDim;
100
- int kpy = -p.upy * p.kernelW;
101
-
102
- // Inner loop.
103
- float v = 0.0f;
104
- for (int y = 0; y < h; y++)
105
- {
106
- for (int x = 0; x < w; x++)
107
- {
108
- v += (float)(*xp) * (float)(*kp);
109
- xp += xpx;
110
- kp += kpx;
111
- }
112
- xp += xpy - w * xpx;
113
- kp += kpy - w * kpx;
114
- }
115
-
116
- // Store result.
117
- p.y[((majorIdx * p.outH + outY) * p.outW + outX) * p.minorDim + minorIdx] = (T)v;
118
- }
119
- }
120
-
121
- //------------------------------------------------------------------------
122
- // Specialized CUDA implementation for small filter kernels.
123
-
124
- template <class T, int upx, int upy, int downx, int downy, int kernelW, int kernelH, int tileOutW, int tileOutH>
125
- static __global__ void UpFirDn2DKernel_small(const UpFirDn2DKernelParams<T> p)
126
- {
127
- //assert(kernelW % upx == 0);
128
- //assert(kernelH % upy == 0);
129
- const int tileInW = ((tileOutW - 1) * downx + kernelW - 1) / upx + 1;
130
- const int tileInH = ((tileOutH - 1) * downy + kernelH - 1) / upy + 1;
131
- __shared__ volatile float sk[kernelH][kernelW];
132
- __shared__ volatile float sx[tileInH][tileInW];
133
-
134
- // Calculate tile index.
135
- int minorIdx = blockIdx.x;
136
- int tileOutY = minorIdx / p.minorDim;
137
- minorIdx -= tileOutY * p.minorDim;
138
- tileOutY *= tileOutH;
139
- int tileOutXBase = blockIdx.y * p.loopX * tileOutW;
140
- int majorIdxBase = blockIdx.z * p.loopMajor;
141
- if (tileOutXBase >= p.outW | tileOutY >= p.outH | majorIdxBase >= p.majorDim)
142
- return;
143
-
144
- // Load filter kernel (flipped).
145
- for (int tapIdx = threadIdx.x; tapIdx < kernelH * kernelW; tapIdx += blockDim.x)
146
- {
147
- int ky = tapIdx / kernelW;
148
- int kx = tapIdx - ky * kernelW;
149
- float v = 0.0f;
150
- if (kx < p.kernelW & ky < p.kernelH)
151
- v = (float)p.k[(p.kernelH - 1 - ky) * p.kernelW + (p.kernelW - 1 - kx)];
152
- sk[ky][kx] = v;
153
- }
154
-
155
- // Loop over majorDim and outX.
156
- for (int loopMajor = 0, majorIdx = majorIdxBase; loopMajor < p.loopMajor & majorIdx < p.majorDim; loopMajor++, majorIdx++)
157
- for (int loopX = 0, tileOutX = tileOutXBase; loopX < p.loopX & tileOutX < p.outW; loopX++, tileOutX += tileOutW)
158
- {
159
- // Load input pixels.
160
- int tileMidX = tileOutX * downx + upx - 1 - p.padx0;
161
- int tileMidY = tileOutY * downy + upy - 1 - p.pady0;
162
- int tileInX = floorDiv(tileMidX, upx);
163
- int tileInY = floorDiv(tileMidY, upy);
164
- __syncthreads();
165
- for (int inIdx = threadIdx.x; inIdx < tileInH * tileInW; inIdx += blockDim.x)
166
- {
167
- int relInY = inIdx / tileInW;
168
- int relInX = inIdx - relInY * tileInW;
169
- int inX = relInX + tileInX;
170
- int inY = relInY + tileInY;
171
- float v = 0.0f;
172
- if (inX >= 0 & inY >= 0 & inX < p.inW & inY < p.inH)
173
- v = (float)p.x[((majorIdx * p.inH + inY) * p.inW + inX) * p.minorDim + minorIdx];
174
- sx[relInY][relInX] = v;
175
- }
176
-
177
- // Loop over output pixels.
178
- __syncthreads();
179
- for (int outIdx = threadIdx.x; outIdx < tileOutH * tileOutW; outIdx += blockDim.x)
180
- {
181
- int relOutY = outIdx / tileOutW;
182
- int relOutX = outIdx - relOutY * tileOutW;
183
- int outX = relOutX + tileOutX;
184
- int outY = relOutY + tileOutY;
185
-
186
- // Setup receptive field.
187
- int midX = tileMidX + relOutX * downx;
188
- int midY = tileMidY + relOutY * downy;
189
- int inX = floorDiv(midX, upx);
190
- int inY = floorDiv(midY, upy);
191
- int relInX = inX - tileInX;
192
- int relInY = inY - tileInY;
193
- int kernelX = (inX + 1) * upx - midX - 1; // flipped
194
- int kernelY = (inY + 1) * upy - midY - 1; // flipped
195
-
196
- // Inner loop.
197
- float v = 0.0f;
198
- #pragma unroll
199
- for (int y = 0; y < kernelH / upy; y++)
200
- #pragma unroll
201
- for (int x = 0; x < kernelW / upx; x++)
202
- v += sx[relInY + y][relInX + x] * sk[kernelY + y * upy][kernelX + x * upx];
203
-
204
- // Store result.
205
- if (outX < p.outW & outY < p.outH)
206
- p.y[((majorIdx * p.outH + outY) * p.outW + outX) * p.minorDim + minorIdx] = (T)v;
207
- }
208
- }
209
- }
210
-
211
- //------------------------------------------------------------------------
212
- // TensorFlow op.
213
-
214
- template <class T>
215
- struct UpFirDn2DOp : public OpKernel
216
- {
217
- UpFirDn2DKernelParams<T> m_attribs;
218
-
219
- UpFirDn2DOp(OpKernelConstruction* ctx) : OpKernel(ctx)
220
- {
221
- memset(&m_attribs, 0, sizeof(m_attribs));
222
- OP_REQUIRES_OK(ctx, ctx->GetAttr("upx", &m_attribs.upx));
223
- OP_REQUIRES_OK(ctx, ctx->GetAttr("upy", &m_attribs.upy));
224
- OP_REQUIRES_OK(ctx, ctx->GetAttr("downx", &m_attribs.downx));
225
- OP_REQUIRES_OK(ctx, ctx->GetAttr("downy", &m_attribs.downy));
226
- OP_REQUIRES_OK(ctx, ctx->GetAttr("padx0", &m_attribs.padx0));
227
- OP_REQUIRES_OK(ctx, ctx->GetAttr("padx1", &m_attribs.padx1));
228
- OP_REQUIRES_OK(ctx, ctx->GetAttr("pady0", &m_attribs.pady0));
229
- OP_REQUIRES_OK(ctx, ctx->GetAttr("pady1", &m_attribs.pady1));
230
- OP_REQUIRES(ctx, m_attribs.upx >= 1 && m_attribs.upy >= 1, errors::InvalidArgument("upx and upy must be at least 1x1"));
231
- OP_REQUIRES(ctx, m_attribs.downx >= 1 && m_attribs.downy >= 1, errors::InvalidArgument("downx and downy must be at least 1x1"));
232
- }
233
-
234
- void Compute(OpKernelContext* ctx)
235
- {
236
- UpFirDn2DKernelParams<T> p = m_attribs;
237
- cudaStream_t stream = ctx->eigen_device<Eigen::GpuDevice>().stream();
238
-
239
- const Tensor& x = ctx->input(0); // [majorDim, inH, inW, minorDim]
240
- const Tensor& k = ctx->input(1); // [kernelH, kernelW]
241
- p.x = x.flat<T>().data();
242
- p.k = k.flat<T>().data();
243
- OP_REQUIRES(ctx, x.dims() == 4, errors::InvalidArgument("input must have rank 4"));
244
- OP_REQUIRES(ctx, k.dims() == 2, errors::InvalidArgument("kernel must have rank 2"));
245
- OP_REQUIRES(ctx, x.NumElements() <= kint32max, errors::InvalidArgument("input too large"));
246
- OP_REQUIRES(ctx, k.NumElements() <= kint32max, errors::InvalidArgument("kernel too large"));
247
-
248
- p.majorDim = (int)x.dim_size(0);
249
- p.inH = (int)x.dim_size(1);
250
- p.inW = (int)x.dim_size(2);
251
- p.minorDim = (int)x.dim_size(3);
252
- p.kernelH = (int)k.dim_size(0);
253
- p.kernelW = (int)k.dim_size(1);
254
- OP_REQUIRES(ctx, p.kernelW >= 1 && p.kernelH >= 1, errors::InvalidArgument("kernel must be at least 1x1"));
255
-
256
- p.outW = (p.inW * p.upx + p.padx0 + p.padx1 - p.kernelW + p.downx) / p.downx;
257
- p.outH = (p.inH * p.upy + p.pady0 + p.pady1 - p.kernelH + p.downy) / p.downy;
258
- OP_REQUIRES(ctx, p.outW >= 1 && p.outH >= 1, errors::InvalidArgument("output must be at least 1x1"));
259
-
260
- Tensor* y = NULL; // [majorDim, outH, outW, minorDim]
261
- TensorShape ys;
262
- ys.AddDim(p.majorDim);
263
- ys.AddDim(p.outH);
264
- ys.AddDim(p.outW);
265
- ys.AddDim(p.minorDim);
266
- OP_REQUIRES_OK(ctx, ctx->allocate_output(0, ys, &y));
267
- p.y = y->flat<T>().data();
268
- OP_REQUIRES(ctx, y->NumElements() <= kint32max, errors::InvalidArgument("output too large"));
269
-
270
- // Choose CUDA kernel to use.
271
- void* cudaKernel = (void*)UpFirDn2DKernel_large<T>;
272
- int tileOutW = -1;
273
- int tileOutH = -1;
274
- if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 7 && p.kernelH <= 7) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 7,7, 64,16>; tileOutW = 64; tileOutH = 16; }
275
- if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 6 && p.kernelH <= 6) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 6,6, 64,16>; tileOutW = 64; tileOutH = 16; }
276
- if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 5 && p.kernelH <= 5) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 5,5, 64,16>; tileOutW = 64; tileOutH = 16; }
277
- if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 4 && p.kernelH <= 4) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 4,4, 64,16>; tileOutW = 64; tileOutH = 16; }
278
- if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 3 && p.kernelH <= 3) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 3,3, 64,16>; tileOutW = 64; tileOutH = 16; }
279
- if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 8 && p.kernelH <= 8) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 8,8, 64,16>; tileOutW = 64; tileOutH = 16; }
280
- if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 6 && p.kernelH <= 6) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 6,6, 64,16>; tileOutW = 64; tileOutH = 16; }
281
- if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 4 && p.kernelH <= 4) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 4,4, 64,16>; tileOutW = 64; tileOutH = 16; }
282
- if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 2 && p.kernelH <= 2) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 2,2, 64,16>; tileOutW = 64; tileOutH = 16; }
283
- if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 8 && p.kernelH <= 8) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 8,8, 32,8>; tileOutW = 32; tileOutH = 8; }
284
- if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 6 && p.kernelH <= 6) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 6,6, 32,8>; tileOutW = 32; tileOutH = 8; }
285
- if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 4 && p.kernelH <= 4) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 4,4, 32,8>; tileOutW = 32; tileOutH = 8; }
286
- if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 2 && p.kernelH <= 2) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 2,2, 32,8>; tileOutW = 32; tileOutH = 8; }
287
-
288
- // Choose launch params.
289
- dim3 blockSize;
290
- dim3 gridSize;
291
- if (tileOutW > 0 && tileOutH > 0) // small
292
- {
293
- p.loopMajor = (p.majorDim - 1) / 16384 + 1;
294
- p.loopX = 1;
295
- blockSize = dim3(32 * 8, 1, 1);
296
- gridSize = dim3(((p.outH - 1) / tileOutH + 1) * p.minorDim, (p.outW - 1) / (p.loopX * tileOutW) + 1, (p.majorDim - 1) / p.loopMajor + 1);
297
- }
298
- else // large
299
- {
300
- p.loopMajor = (p.majorDim - 1) / 16384 + 1;
301
- p.loopX = 4;
302
- blockSize = dim3(4, 32, 1);
303
- gridSize = dim3((p.outH * p.minorDim - 1) / blockSize.x + 1, (p.outW - 1) / (p.loopX * blockSize.y) + 1, (p.majorDim - 1) / p.loopMajor + 1);
304
- }
305
-
306
- // Launch CUDA kernel.
307
- void* args[] = {&p};
308
- OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel(cudaKernel, gridSize, blockSize, args, 0, stream));
309
- }
310
- };
311
-
312
- REGISTER_OP("UpFirDn2D")
313
- .Input ("x: T")
314
- .Input ("k: T")
315
- .Output ("y: T")
316
- .Attr ("T: {float, half}")
317
- .Attr ("upx: int = 1")
318
- .Attr ("upy: int = 1")
319
- .Attr ("downx: int = 1")
320
- .Attr ("downy: int = 1")
321
- .Attr ("padx0: int = 0")
322
- .Attr ("padx1: int = 0")
323
- .Attr ("pady0: int = 0")
324
- .Attr ("pady1: int = 0");
325
- REGISTER_KERNEL_BUILDER(Name("UpFirDn2D").Device(DEVICE_GPU).TypeConstraint<float>("T"), UpFirDn2DOp<float>);
326
- REGISTER_KERNEL_BUILDER(Name("UpFirDn2D").Device(DEVICE_GPU).TypeConstraint<Eigen::half>("T"), UpFirDn2DOp<Eigen::half>);
327
-
328
- //------------------------------------------------------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/dnnlib/tflib/ops/upfirdn_2d.py DELETED
@@ -1,366 +0,0 @@
1
- # Copyright (c) SenseTime Research. All rights reserved.
2
-
3
- # Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
4
- #
5
- # This work is made available under the Nvidia Source Code License-NC.
6
- # To view a copy of this license, visit
7
- # https://nvlabs.github.io/stylegan2/license.html
8
-
9
- """Custom TensorFlow ops for efficient resampling of 2D images."""
10
-
11
- import os
12
- import numpy as np
13
- import tensorflow as tf
14
- from .. import custom_ops
15
-
16
- def _get_plugin():
17
- return custom_ops.get_plugin(os.path.splitext(__file__)[0] + '.cu')
18
-
19
- #----------------------------------------------------------------------------
20
-
21
- def upfirdn_2d(x, k, upx=1, upy=1, downx=1, downy=1, padx0=0, padx1=0, pady0=0, pady1=0, impl='cuda'):
22
- r"""Pad, upsample, FIR filter, and downsample a batch of 2D images.
23
-
24
- Accepts a batch of 2D images of the shape `[majorDim, inH, inW, minorDim]`
25
- and performs the following operations for each image, batched across
26
- `majorDim` and `minorDim`:
27
-
28
- 1. Pad the image with zeros by the specified number of pixels on each side
29
- (`padx0`, `padx1`, `pady0`, `pady1`). Specifying a negative value
30
- corresponds to cropping the image.
31
-
32
- 2. Upsample the image by inserting the zeros after each pixel (`upx`, `upy`).
33
-
34
- 3. Convolve the image with the specified 2D FIR filter (`k`), shrinking the
35
- image so that the footprint of all output pixels lies within the input image.
36
-
37
- 4. Downsample the image by throwing away pixels (`downx`, `downy`).
38
-
39
- This sequence of operations bears close resemblance to scipy.signal.upfirdn().
40
- The fused op is considerably more efficient than performing the same calculation
41
- using standard TensorFlow ops. It supports gradients of arbitrary order.
42
-
43
- Args:
44
- x: Input tensor of the shape `[majorDim, inH, inW, minorDim]`.
45
- k: 2D FIR filter of the shape `[firH, firW]`.
46
- upx: Integer upsampling factor along the X-axis (default: 1).
47
- upy: Integer upsampling factor along the Y-axis (default: 1).
48
- downx: Integer downsampling factor along the X-axis (default: 1).
49
- downy: Integer downsampling factor along the Y-axis (default: 1).
50
- padx0: Number of pixels to pad on the left side (default: 0).
51
- padx1: Number of pixels to pad on the right side (default: 0).
52
- pady0: Number of pixels to pad on the top side (default: 0).
53
- pady1: Number of pixels to pad on the bottom side (default: 0).
54
- impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
55
-
56
- Returns:
57
- Tensor of the shape `[majorDim, outH, outW, minorDim]`, and same datatype as `x`.
58
- """
59
-
60
- impl_dict = {
61
- 'ref': _upfirdn_2d_ref,
62
- 'cuda': _upfirdn_2d_cuda,
63
- }
64
- return impl_dict[impl](x=x, k=k, upx=upx, upy=upy, downx=downx, downy=downy, padx0=padx0, padx1=padx1, pady0=pady0, pady1=pady1)
65
-
66
- #----------------------------------------------------------------------------
67
-
68
- def _upfirdn_2d_ref(x, k, upx, upy, downx, downy, padx0, padx1, pady0, pady1):
69
- """Slow reference implementation of `upfirdn_2d()` using standard TensorFlow ops."""
70
-
71
- x = tf.convert_to_tensor(x)
72
- k = np.asarray(k, dtype=np.float32)
73
- assert x.shape.rank == 4
74
- inH = x.shape[1].value
75
- inW = x.shape[2].value
76
- minorDim = _shape(x, 3)
77
- kernelH, kernelW = k.shape
78
- assert inW >= 1 and inH >= 1
79
- assert kernelW >= 1 and kernelH >= 1
80
- assert isinstance(upx, int) and isinstance(upy, int)
81
- assert isinstance(downx, int) and isinstance(downy, int)
82
- assert isinstance(padx0, int) and isinstance(padx1, int)
83
- assert isinstance(pady0, int) and isinstance(pady1, int)
84
-
85
- # Upsample (insert zeros).
86
- x = tf.reshape(x, [-1, inH, 1, inW, 1, minorDim])
87
- x = tf.pad(x, [[0, 0], [0, 0], [0, upy - 1], [0, 0], [0, upx - 1], [0, 0]])
88
- x = tf.reshape(x, [-1, inH * upy, inW * upx, minorDim])
89
-
90
- # Pad (crop if negative).
91
- x = tf.pad(x, [[0, 0], [max(pady0, 0), max(pady1, 0)], [max(padx0, 0), max(padx1, 0)], [0, 0]])
92
- x = x[:, max(-pady0, 0) : x.shape[1].value - max(-pady1, 0), max(-padx0, 0) : x.shape[2].value - max(-padx1, 0), :]
93
-
94
- # Convolve with filter.
95
- x = tf.transpose(x, [0, 3, 1, 2])
96
- x = tf.reshape(x, [-1, 1, inH * upy + pady0 + pady1, inW * upx + padx0 + padx1])
97
- w = tf.constant(k[::-1, ::-1, np.newaxis, np.newaxis], dtype=x.dtype)
98
- x = tf.nn.conv2d(x, w, strides=[1,1,1,1], padding='VALID', data_format='NCHW')
99
- x = tf.reshape(x, [-1, minorDim, inH * upy + pady0 + pady1 - kernelH + 1, inW * upx + padx0 + padx1 - kernelW + 1])
100
- x = tf.transpose(x, [0, 2, 3, 1])
101
-
102
- # Downsample (throw away pixels).
103
- return x[:, ::downy, ::downx, :]
104
-
105
- #----------------------------------------------------------------------------
106
-
107
- def _upfirdn_2d_cuda(x, k, upx, upy, downx, downy, padx0, padx1, pady0, pady1):
108
- """Fast CUDA implementation of `upfirdn_2d()` using custom ops."""
109
-
110
- x = tf.convert_to_tensor(x)
111
- k = np.asarray(k, dtype=np.float32)
112
- majorDim, inH, inW, minorDim = x.shape.as_list()
113
- kernelH, kernelW = k.shape
114
- assert inW >= 1 and inH >= 1
115
- assert kernelW >= 1 and kernelH >= 1
116
- assert isinstance(upx, int) and isinstance(upy, int)
117
- assert isinstance(downx, int) and isinstance(downy, int)
118
- assert isinstance(padx0, int) and isinstance(padx1, int)
119
- assert isinstance(pady0, int) and isinstance(pady1, int)
120
-
121
- outW = (inW * upx + padx0 + padx1 - kernelW) // downx + 1
122
- outH = (inH * upy + pady0 + pady1 - kernelH) // downy + 1
123
- assert outW >= 1 and outH >= 1
124
-
125
- kc = tf.constant(k, dtype=x.dtype)
126
- gkc = tf.constant(k[::-1, ::-1], dtype=x.dtype)
127
- gpadx0 = kernelW - padx0 - 1
128
- gpady0 = kernelH - pady0 - 1
129
- gpadx1 = inW * upx - outW * downx + padx0 - upx + 1
130
- gpady1 = inH * upy - outH * downy + pady0 - upy + 1
131
-
132
- @tf.custom_gradient
133
- def func(x):
134
- y = _get_plugin().up_fir_dn2d(x=x, k=kc, upx=upx, upy=upy, downx=downx, downy=downy, padx0=padx0, padx1=padx1, pady0=pady0, pady1=pady1)
135
- y.set_shape([majorDim, outH, outW, minorDim])
136
- @tf.custom_gradient
137
- def grad(dy):
138
- dx = _get_plugin().up_fir_dn2d(x=dy, k=gkc, upx=downx, upy=downy, downx=upx, downy=upy, padx0=gpadx0, padx1=gpadx1, pady0=gpady0, pady1=gpady1)
139
- dx.set_shape([majorDim, inH, inW, minorDim])
140
- return dx, func
141
- return y, grad
142
- return func(x)
143
-
144
- #----------------------------------------------------------------------------
145
-
146
- def filter_2d(x, k, gain=1, data_format='NCHW', impl='cuda'):
147
- r"""Filter a batch of 2D images with the given FIR filter.
148
-
149
- Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]`
150
- and filters each image with the given filter. The filter is normalized so that
151
- if the input pixels are constant, they will be scaled by the specified `gain`.
152
- Pixels outside the image are assumed to be zero.
153
-
154
- Args:
155
- x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
156
- k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).
157
- gain: Scaling factor for signal magnitude (default: 1.0).
158
- data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`).
159
- impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
160
-
161
- Returns:
162
- Tensor of the same shape and datatype as `x`.
163
- """
164
-
165
- k = _setup_kernel(k) * gain
166
- p = k.shape[0] - 1
167
- return _simple_upfirdn_2d(x, k, pad0=(p+1)//2, pad1=p//2, data_format=data_format, impl=impl)
168
-
169
- #----------------------------------------------------------------------------
170
-
171
- def upsample_2d(x, k=None, factor=2, gain=1, data_format='NCHW', impl='cuda'):
172
- r"""Upsample a batch of 2D images with the given filter.
173
-
174
- Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]`
175
- and upsamples each image with the given filter. The filter is normalized so that
176
- if the input pixels are constant, they will be scaled by the specified `gain`.
177
- Pixels outside the image are assumed to be zero, and the filter is padded with
178
- zeros so that its shape is a multiple of the upsampling factor.
179
-
180
- Args:
181
- x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
182
- k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).
183
- The default is `[1] * factor`, which corresponds to nearest-neighbor
184
- upsampling.
185
- factor: Integer upsampling factor (default: 2).
186
- gain: Scaling factor for signal magnitude (default: 1.0).
187
- data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`).
188
- impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
189
-
190
- Returns:
191
- Tensor of the shape `[N, C, H * factor, W * factor]` or
192
- `[N, H * factor, W * factor, C]`, and same datatype as `x`.
193
- """
194
-
195
- assert isinstance(factor, int) and factor >= 1
196
- if k is None:
197
- k = [1] * factor
198
- k = _setup_kernel(k) * (gain * (factor ** 2))
199
- p = k.shape[0] - factor
200
- return _simple_upfirdn_2d(x, k, up=factor, pad0=(p+1)//2+factor-1, pad1=p//2, data_format=data_format, impl=impl)
201
-
202
- #----------------------------------------------------------------------------
203
-
204
- def downsample_2d(x, k=None, factor=2, gain=1, data_format='NCHW', impl='cuda'):
205
- r"""Downsample a batch of 2D images with the given filter.
206
-
207
- Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]`
208
- and downsamples each image with the given filter. The filter is normalized so that
209
- if the input pixels are constant, they will be scaled by the specified `gain`.
210
- Pixels outside the image are assumed to be zero, and the filter is padded with
211
- zeros so that its shape is a multiple of the downsampling factor.
212
-
213
- Args:
214
- x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
215
- k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).
216
- The default is `[1] * factor`, which corresponds to average pooling.
217
- factor: Integer downsampling factor (default: 2).
218
- gain: Scaling factor for signal magnitude (default: 1.0).
219
- data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`).
220
- impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
221
-
222
- Returns:
223
- Tensor of the shape `[N, C, H // factor, W // factor]` or
224
- `[N, H // factor, W // factor, C]`, and same datatype as `x`.
225
- """
226
-
227
- assert isinstance(factor, int) and factor >= 1
228
- if k is None:
229
- k = [1] * factor
230
- k = _setup_kernel(k) * gain
231
- p = k.shape[0] - factor
232
- return _simple_upfirdn_2d(x, k, down=factor, pad0=(p+1)//2, pad1=p//2, data_format=data_format, impl=impl)
233
-
234
- #----------------------------------------------------------------------------
235
-
236
- def upsample_conv_2d(x, w, k=None, factor=2, gain=1, data_format='NCHW', impl='cuda'):
237
- r"""Fused `upsample_2d()` followed by `tf.nn.conv2d()`.
238
-
239
- Padding is performed only once at the beginning, not between the operations.
240
- The fused op is considerably more efficient than performing the same calculation
241
- using standard TensorFlow ops. It supports gradients of arbitrary order.
242
-
243
- Args:
244
- x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
245
- w: Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`.
246
- Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.
247
- k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).
248
- The default is `[1] * factor`, which corresponds to nearest-neighbor
249
- upsampling.
250
- factor: Integer upsampling factor (default: 2).
251
- gain: Scaling factor for signal magnitude (default: 1.0).
252
- data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`).
253
- impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
254
-
255
- Returns:
256
- Tensor of the shape `[N, C, H * factor, W * factor]` or
257
- `[N, H * factor, W * factor, C]`, and same datatype as `x`.
258
- """
259
-
260
- assert isinstance(factor, int) and factor >= 1
261
-
262
- # Check weight shape.
263
- w = tf.convert_to_tensor(w)
264
- assert w.shape.rank == 4
265
- convH = w.shape[0].value
266
- convW = w.shape[1].value
267
- inC = _shape(w, 2)
268
- outC = _shape(w, 3)
269
- assert convW == convH
270
-
271
- # Setup filter kernel.
272
- if k is None:
273
- k = [1] * factor
274
- k = _setup_kernel(k) * (gain * (factor ** 2))
275
- p = (k.shape[0] - factor) - (convW - 1)
276
-
277
- # Determine data dimensions.
278
- if data_format == 'NCHW':
279
- stride = [1, 1, factor, factor]
280
- output_shape = [_shape(x, 0), outC, (_shape(x, 2) - 1) * factor + convH, (_shape(x, 3) - 1) * factor + convW]
281
- num_groups = _shape(x, 1) // inC
282
- else:
283
- stride = [1, factor, factor, 1]
284
- output_shape = [_shape(x, 0), (_shape(x, 1) - 1) * factor + convH, (_shape(x, 2) - 1) * factor + convW, outC]
285
- num_groups = _shape(x, 3) // inC
286
-
287
- # Transpose weights.
288
- w = tf.reshape(w, [convH, convW, inC, num_groups, -1])
289
- w = tf.transpose(w[::-1, ::-1], [0, 1, 4, 3, 2])
290
- w = tf.reshape(w, [convH, convW, -1, num_groups * inC])
291
-
292
- # Execute.
293
- x = tf.nn.conv2d_transpose(x, w, output_shape=output_shape, strides=stride, padding='VALID', data_format=data_format)
294
- return _simple_upfirdn_2d(x, k, pad0=(p+1)//2+factor-1, pad1=p//2+1, data_format=data_format, impl=impl)
295
-
296
- #----------------------------------------------------------------------------
297
-
298
- def conv_downsample_2d(x, w, k=None, factor=2, gain=1, data_format='NCHW', impl='cuda'):
299
- r"""Fused `tf.nn.conv2d()` followed by `downsample_2d()`.
300
-
301
- Padding is performed only once at the beginning, not between the operations.
302
- The fused op is considerably more efficient than performing the same calculation
303
- using standard TensorFlow ops. It supports gradients of arbitrary order.
304
-
305
- Args:
306
- x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
307
- w: Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`.
308
- Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.
309
- k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).
310
- The default is `[1] * factor`, which corresponds to average pooling.
311
- factor: Integer downsampling factor (default: 2).
312
- gain: Scaling factor for signal magnitude (default: 1.0).
313
- data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`).
314
- impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
315
-
316
- Returns:
317
- Tensor of the shape `[N, C, H // factor, W // factor]` or
318
- `[N, H // factor, W // factor, C]`, and same datatype as `x`.
319
- """
320
-
321
- assert isinstance(factor, int) and factor >= 1
322
- w = tf.convert_to_tensor(w)
323
- convH, convW, _inC, _outC = w.shape.as_list()
324
- assert convW == convH
325
- if k is None:
326
- k = [1] * factor
327
- k = _setup_kernel(k) * gain
328
- p = (k.shape[0] - factor) + (convW - 1)
329
- if data_format == 'NCHW':
330
- s = [1, 1, factor, factor]
331
- else:
332
- s = [1, factor, factor, 1]
333
- x = _simple_upfirdn_2d(x, k, pad0=(p+1)//2, pad1=p//2, data_format=data_format, impl=impl)
334
- return tf.nn.conv2d(x, w, strides=s, padding='VALID', data_format=data_format)
335
-
336
- #----------------------------------------------------------------------------
337
- # Internal helper funcs.
338
-
339
- def _shape(tf_expr, dim_idx):
340
- if tf_expr.shape.rank is not None:
341
- dim = tf_expr.shape[dim_idx].value
342
- if dim is not None:
343
- return dim
344
- return tf.shape(tf_expr)[dim_idx]
345
-
346
- def _setup_kernel(k):
347
- k = np.asarray(k, dtype=np.float32)
348
- if k.ndim == 1:
349
- k = np.outer(k, k)
350
- k /= np.sum(k)
351
- assert k.ndim == 2
352
- assert k.shape[0] == k.shape[1]
353
- return k
354
-
355
- def _simple_upfirdn_2d(x, k, up=1, down=1, pad0=0, pad1=0, data_format='NCHW', impl='cuda'):
356
- assert data_format in ['NCHW', 'NHWC']
357
- assert x.shape.rank == 4
358
- y = x
359
- if data_format == 'NCHW':
360
- y = tf.reshape(y, [-1, _shape(y, 2), _shape(y, 3), 1])
361
- y = upfirdn_2d(y, k, upx=up, upy=up, downx=down, downy=down, padx0=pad0, padx1=pad1, pady0=pad0, pady1=pad1, impl=impl)
362
- if data_format == 'NCHW':
363
- y = tf.reshape(y, [-1, _shape(x, 1), _shape(y, 1), _shape(y, 2)])
364
- return y
365
-
366
- #----------------------------------------------------------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/dnnlib/tflib/optimizer.py DELETED
@@ -1,338 +0,0 @@
1
- # Copyright (c) SenseTime Research. All rights reserved.
2
-
3
- # Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
4
- #
5
- # This work is made available under the Nvidia Source Code License-NC.
6
- # To view a copy of this license, visit
7
- # https://nvlabs.github.io/stylegan2/license.html
8
-
9
- """Helper wrapper for a Tensorflow optimizer."""
10
-
11
- import numpy as np
12
- import tensorflow as tf
13
-
14
- from collections import OrderedDict
15
- from typing import List, Union
16
-
17
- from . import autosummary
18
- from . import tfutil
19
- from .. import util
20
-
21
- from .tfutil import TfExpression, TfExpressionEx
22
-
23
- try:
24
- # TensorFlow 1.13
25
- from tensorflow.python.ops import nccl_ops
26
- except:
27
- # Older TensorFlow versions
28
- import tensorflow.contrib.nccl as nccl_ops
29
-
30
- class Optimizer:
31
- """A Wrapper for tf.train.Optimizer.
32
-
33
- Automatically takes care of:
34
- - Gradient averaging for multi-GPU training.
35
- - Gradient accumulation for arbitrarily large minibatches.
36
- - Dynamic loss scaling and typecasts for FP16 training.
37
- - Ignoring corrupted gradients that contain NaNs/Infs.
38
- - Reporting statistics.
39
- - Well-chosen default settings.
40
- """
41
-
42
- def __init__(self,
43
- name: str = "Train", # Name string that will appear in TensorFlow graph.
44
- tf_optimizer: str = "tf.train.AdamOptimizer", # Underlying optimizer class.
45
- learning_rate: TfExpressionEx = 0.001, # Learning rate. Can vary over time.
46
- minibatch_multiplier: TfExpressionEx = None, # Treat N consecutive minibatches as one by accumulating gradients.
47
- share: "Optimizer" = None, # Share internal state with a previously created optimizer?
48
- use_loss_scaling: bool = False, # Enable dynamic loss scaling for robust mixed-precision training?
49
- loss_scaling_init: float = 64.0, # Log2 of initial loss scaling factor.
50
- loss_scaling_inc: float = 0.0005, # Log2 of per-minibatch loss scaling increment when there is no overflow.
51
- loss_scaling_dec: float = 1.0, # Log2 of per-minibatch loss scaling decrement when there is an overflow.
52
- report_mem_usage: bool = False, # Report fine-grained memory usage statistics in TensorBoard?
53
- **kwargs):
54
-
55
- # Public fields.
56
- self.name = name
57
- self.learning_rate = learning_rate
58
- self.minibatch_multiplier = minibatch_multiplier
59
- self.id = self.name.replace("/", ".")
60
- self.scope = tf.get_default_graph().unique_name(self.id)
61
- self.optimizer_class = util.get_obj_by_name(tf_optimizer)
62
- self.optimizer_kwargs = dict(kwargs)
63
- self.use_loss_scaling = use_loss_scaling
64
- self.loss_scaling_init = loss_scaling_init
65
- self.loss_scaling_inc = loss_scaling_inc
66
- self.loss_scaling_dec = loss_scaling_dec
67
-
68
- # Private fields.
69
- self._updates_applied = False
70
- self._devices = OrderedDict() # device_name => EasyDict()
71
- self._shared_optimizers = OrderedDict() # device_name => optimizer_class
72
- self._gradient_shapes = None # [shape, ...]
73
- self._report_mem_usage = report_mem_usage
74
-
75
- # Validate arguments.
76
- assert callable(self.optimizer_class)
77
-
78
- # Share internal state if requested.
79
- if share is not None:
80
- assert isinstance(share, Optimizer)
81
- assert self.optimizer_class is share.optimizer_class
82
- assert self.learning_rate is share.learning_rate
83
- assert self.optimizer_kwargs == share.optimizer_kwargs
84
- self._shared_optimizers = share._shared_optimizers # pylint: disable=protected-access
85
-
86
- def _get_device(self, device_name: str):
87
- """Get internal state for the given TensorFlow device."""
88
- tfutil.assert_tf_initialized()
89
- if device_name in self._devices:
90
- return self._devices[device_name]
91
-
92
- # Initialize fields.
93
- device = util.EasyDict()
94
- device.name = device_name
95
- device.optimizer = None # Underlying optimizer: optimizer_class
96
- device.loss_scaling_var = None # Log2 of loss scaling: tf.Variable
97
- device.grad_raw = OrderedDict() # Raw gradients: var => [grad, ...]
98
- device.grad_clean = OrderedDict() # Clean gradients: var => grad
99
- device.grad_acc_vars = OrderedDict() # Accumulation sums: var => tf.Variable
100
- device.grad_acc_count = None # Accumulation counter: tf.Variable
101
- device.grad_acc = OrderedDict() # Accumulated gradients: var => grad
102
-
103
- # Setup TensorFlow objects.
104
- with tfutil.absolute_name_scope(self.scope + "/Devices"), tf.device(device_name), tf.control_dependencies(None):
105
- if device_name not in self._shared_optimizers:
106
- optimizer_name = self.scope.replace("/", "_") + "_opt%d" % len(self._shared_optimizers)
107
- self._shared_optimizers[device_name] = self.optimizer_class(name=optimizer_name, learning_rate=self.learning_rate, **self.optimizer_kwargs)
108
- device.optimizer = self._shared_optimizers[device_name]
109
- if self.use_loss_scaling:
110
- device.loss_scaling_var = tf.Variable(np.float32(self.loss_scaling_init), trainable=False, name="loss_scaling_var")
111
-
112
- # Register device.
113
- self._devices[device_name] = device
114
- return device
115
-
116
- def register_gradients(self, loss: TfExpression, trainable_vars: Union[List, dict]) -> None:
117
- """Register the gradients of the given loss function with respect to the given variables.
118
- Intended to be called once per GPU."""
119
- tfutil.assert_tf_initialized()
120
- assert not self._updates_applied
121
- device = self._get_device(loss.device)
122
-
123
- # Validate trainables.
124
- if isinstance(trainable_vars, dict):
125
- trainable_vars = list(trainable_vars.values()) # allow passing in Network.trainables as vars
126
- assert isinstance(trainable_vars, list) and len(trainable_vars) >= 1
127
- assert all(tfutil.is_tf_expression(expr) for expr in trainable_vars + [loss])
128
- assert all(var.device == device.name for var in trainable_vars)
129
-
130
- # Validate shapes.
131
- if self._gradient_shapes is None:
132
- self._gradient_shapes = [var.shape.as_list() for var in trainable_vars]
133
- assert len(trainable_vars) == len(self._gradient_shapes)
134
- assert all(var.shape.as_list() == var_shape for var, var_shape in zip(trainable_vars, self._gradient_shapes))
135
-
136
- # Report memory usage if requested.
137
- deps = []
138
- if self._report_mem_usage:
139
- self._report_mem_usage = False
140
- try:
141
- with tf.name_scope(self.id + '_mem'), tf.device(device.name), tf.control_dependencies([loss]):
142
- deps.append(autosummary.autosummary(self.id + "/mem_usage_gb", tf.contrib.memory_stats.BytesInUse() / 2**30))
143
- except tf.errors.NotFoundError:
144
- pass
145
-
146
- # Compute gradients.
147
- with tf.name_scope(self.id + "_grad"), tf.device(device.name), tf.control_dependencies(deps):
148
- loss = self.apply_loss_scaling(tf.cast(loss, tf.float32))
149
- gate = tf.train.Optimizer.GATE_NONE # disable gating to reduce memory usage
150
- grad_list = device.optimizer.compute_gradients(loss=loss, var_list=trainable_vars, gate_gradients=gate)
151
-
152
- # Register gradients.
153
- for grad, var in grad_list:
154
- if var not in device.grad_raw:
155
- device.grad_raw[var] = []
156
- device.grad_raw[var].append(grad)
157
-
158
- def apply_updates(self, allow_no_op: bool = False) -> tf.Operation:
159
- """Construct training op to update the registered variables based on their gradients."""
160
- tfutil.assert_tf_initialized()
161
- assert not self._updates_applied
162
- self._updates_applied = True
163
- all_ops = []
164
-
165
- # Check for no-op.
166
- if allow_no_op and len(self._devices) == 0:
167
- with tfutil.absolute_name_scope(self.scope):
168
- return tf.no_op(name='TrainingOp')
169
-
170
- # Clean up gradients.
171
- for device_idx, device in enumerate(self._devices.values()):
172
- with tfutil.absolute_name_scope(self.scope + "/Clean%d" % device_idx), tf.device(device.name):
173
- for var, grad in device.grad_raw.items():
174
-
175
- # Filter out disconnected gradients and convert to float32.
176
- grad = [g for g in grad if g is not None]
177
- grad = [tf.cast(g, tf.float32) for g in grad]
178
-
179
- # Sum within the device.
180
- if len(grad) == 0:
181
- grad = tf.zeros(var.shape) # No gradients => zero.
182
- elif len(grad) == 1:
183
- grad = grad[0] # Single gradient => use as is.
184
- else:
185
- grad = tf.add_n(grad) # Multiple gradients => sum.
186
-
187
- # Scale as needed.
188
- scale = 1.0 / len(device.grad_raw[var]) / len(self._devices)
189
- scale = tf.constant(scale, dtype=tf.float32, name="scale")
190
- if self.minibatch_multiplier is not None:
191
- scale /= tf.cast(self.minibatch_multiplier, tf.float32)
192
- scale = self.undo_loss_scaling(scale)
193
- device.grad_clean[var] = grad * scale
194
-
195
- # Sum gradients across devices.
196
- if len(self._devices) > 1:
197
- with tfutil.absolute_name_scope(self.scope + "/Broadcast"), tf.device(None):
198
- for all_vars in zip(*[device.grad_clean.keys() for device in self._devices.values()]):
199
- if len(all_vars) > 0 and all(dim > 0 for dim in all_vars[0].shape.as_list()): # NCCL does not support zero-sized tensors.
200
- all_grads = [device.grad_clean[var] for device, var in zip(self._devices.values(), all_vars)]
201
- all_grads = nccl_ops.all_sum(all_grads)
202
- for device, var, grad in zip(self._devices.values(), all_vars, all_grads):
203
- device.grad_clean[var] = grad
204
-
205
- # Apply updates separately on each device.
206
- for device_idx, device in enumerate(self._devices.values()):
207
- with tfutil.absolute_name_scope(self.scope + "/Apply%d" % device_idx), tf.device(device.name):
208
- # pylint: disable=cell-var-from-loop
209
-
210
- # Accumulate gradients over time.
211
- if self.minibatch_multiplier is None:
212
- acc_ok = tf.constant(True, name='acc_ok')
213
- device.grad_acc = OrderedDict(device.grad_clean)
214
- else:
215
- # Create variables.
216
- with tf.control_dependencies(None):
217
- for var in device.grad_clean.keys():
218
- device.grad_acc_vars[var] = tf.Variable(tf.zeros(var.shape), trainable=False, name="grad_acc_var")
219
- device.grad_acc_count = tf.Variable(tf.zeros([]), trainable=False, name="grad_acc_count")
220
-
221
- # Track counter.
222
- count_cur = device.grad_acc_count + 1.0
223
- count_inc_op = lambda: tf.assign(device.grad_acc_count, count_cur)
224
- count_reset_op = lambda: tf.assign(device.grad_acc_count, tf.zeros([]))
225
- acc_ok = (count_cur >= tf.cast(self.minibatch_multiplier, tf.float32))
226
- all_ops.append(tf.cond(acc_ok, count_reset_op, count_inc_op))
227
-
228
- # Track gradients.
229
- for var, grad in device.grad_clean.items():
230
- acc_var = device.grad_acc_vars[var]
231
- acc_cur = acc_var + grad
232
- device.grad_acc[var] = acc_cur
233
- with tf.control_dependencies([acc_cur]):
234
- acc_inc_op = lambda: tf.assign(acc_var, acc_cur)
235
- acc_reset_op = lambda: tf.assign(acc_var, tf.zeros(var.shape))
236
- all_ops.append(tf.cond(acc_ok, acc_reset_op, acc_inc_op))
237
-
238
- # No overflow => apply gradients.
239
- all_ok = tf.reduce_all(tf.stack([acc_ok] + [tf.reduce_all(tf.is_finite(g)) for g in device.grad_acc.values()]))
240
- apply_op = lambda: device.optimizer.apply_gradients([(tf.cast(grad, var.dtype), var) for var, grad in device.grad_acc.items()])
241
- all_ops.append(tf.cond(all_ok, apply_op, tf.no_op))
242
-
243
- # Adjust loss scaling.
244
- if self.use_loss_scaling:
245
- ls_inc_op = lambda: tf.assign_add(device.loss_scaling_var, self.loss_scaling_inc)
246
- ls_dec_op = lambda: tf.assign_sub(device.loss_scaling_var, self.loss_scaling_dec)
247
- ls_update_op = lambda: tf.group(tf.cond(all_ok, ls_inc_op, ls_dec_op))
248
- all_ops.append(tf.cond(acc_ok, ls_update_op, tf.no_op))
249
-
250
- # Last device => report statistics.
251
- if device_idx == len(self._devices) - 1:
252
- all_ops.append(autosummary.autosummary(self.id + "/learning_rate", self.learning_rate))
253
- all_ops.append(autosummary.autosummary(self.id + "/overflow_frequency", tf.where(all_ok, 0, 1), condition=acc_ok))
254
- if self.use_loss_scaling:
255
- all_ops.append(autosummary.autosummary(self.id + "/loss_scaling_log2", device.loss_scaling_var))
256
-
257
- # Initialize variables.
258
- self.reset_optimizer_state()
259
- if self.use_loss_scaling:
260
- tfutil.init_uninitialized_vars([device.loss_scaling_var for device in self._devices.values()])
261
- if self.minibatch_multiplier is not None:
262
- tfutil.run([var.initializer for device in self._devices.values() for var in list(device.grad_acc_vars.values()) + [device.grad_acc_count]])
263
-
264
- # Group everything into a single op.
265
- with tfutil.absolute_name_scope(self.scope):
266
- return tf.group(*all_ops, name="TrainingOp")
267
-
268
- def reset_optimizer_state(self) -> None:
269
- """Reset internal state of the underlying optimizer."""
270
- tfutil.assert_tf_initialized()
271
- tfutil.run([var.initializer for device in self._devices.values() for var in device.optimizer.variables()])
272
-
273
- def get_loss_scaling_var(self, device: str) -> Union[tf.Variable, None]:
274
- """Get or create variable representing log2 of the current dynamic loss scaling factor."""
275
- return self._get_device(device).loss_scaling_var
276
-
277
- def apply_loss_scaling(self, value: TfExpression) -> TfExpression:
278
- """Apply dynamic loss scaling for the given expression."""
279
- assert tfutil.is_tf_expression(value)
280
- if not self.use_loss_scaling:
281
- return value
282
- return value * tfutil.exp2(self.get_loss_scaling_var(value.device))
283
-
284
- def undo_loss_scaling(self, value: TfExpression) -> TfExpression:
285
- """Undo the effect of dynamic loss scaling for the given expression."""
286
- assert tfutil.is_tf_expression(value)
287
- if not self.use_loss_scaling:
288
- return value
289
- return value * tfutil.exp2(-self.get_loss_scaling_var(value.device)) # pylint: disable=invalid-unary-operand-type
290
-
291
-
292
- class SimpleAdam:
293
- """Simplified version of tf.train.AdamOptimizer that behaves identically when used with dnnlib.tflib.Optimizer."""
294
-
295
- def __init__(self, name="Adam", learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8):
296
- self.name = name
297
- self.learning_rate = learning_rate
298
- self.beta1 = beta1
299
- self.beta2 = beta2
300
- self.epsilon = epsilon
301
- self.all_state_vars = []
302
-
303
- def variables(self):
304
- return self.all_state_vars
305
-
306
- def compute_gradients(self, loss, var_list, gate_gradients=tf.train.Optimizer.GATE_NONE):
307
- assert gate_gradients == tf.train.Optimizer.GATE_NONE
308
- return list(zip(tf.gradients(loss, var_list), var_list))
309
-
310
- def apply_gradients(self, grads_and_vars):
311
- with tf.name_scope(self.name):
312
- state_vars = []
313
- update_ops = []
314
-
315
- # Adjust learning rate to deal with startup bias.
316
- with tf.control_dependencies(None):
317
- b1pow_var = tf.Variable(dtype=tf.float32, initial_value=1, trainable=False)
318
- b2pow_var = tf.Variable(dtype=tf.float32, initial_value=1, trainable=False)
319
- state_vars += [b1pow_var, b2pow_var]
320
- b1pow_new = b1pow_var * self.beta1
321
- b2pow_new = b2pow_var * self.beta2
322
- update_ops += [tf.assign(b1pow_var, b1pow_new), tf.assign(b2pow_var, b2pow_new)]
323
- lr_new = self.learning_rate * tf.sqrt(1 - b2pow_new) / (1 - b1pow_new)
324
-
325
- # Construct ops to update each variable.
326
- for grad, var in grads_and_vars:
327
- with tf.control_dependencies(None):
328
- m_var = tf.Variable(dtype=tf.float32, initial_value=tf.zeros_like(var), trainable=False)
329
- v_var = tf.Variable(dtype=tf.float32, initial_value=tf.zeros_like(var), trainable=False)
330
- state_vars += [m_var, v_var]
331
- m_new = self.beta1 * m_var + (1 - self.beta1) * grad
332
- v_new = self.beta2 * v_var + (1 - self.beta2) * tf.square(grad)
333
- var_delta = lr_new * m_new / (tf.sqrt(v_new) + self.epsilon)
334
- update_ops += [tf.assign(m_var, m_new), tf.assign(v_var, v_new), tf.assign_sub(var, var_delta)]
335
-
336
- # Group everything together.
337
- self.all_state_vars += state_vars
338
- return tf.group(*update_ops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/dnnlib/tflib/tfutil.py DELETED
@@ -1,254 +0,0 @@
1
- # Copyright (c) SenseTime Research. All rights reserved.
2
-
3
- # Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
4
- #
5
- # This work is made available under the Nvidia Source Code License-NC.
6
- # To view a copy of this license, visit
7
- # https://nvlabs.github.io/stylegan2/license.html
8
-
9
- """Miscellaneous helper utils for Tensorflow."""
10
-
11
- import os
12
- import numpy as np
13
- import tensorflow as tf
14
-
15
- # Silence deprecation warnings from TensorFlow 1.13 onwards
16
- import logging
17
- logging.getLogger('tensorflow').setLevel(logging.ERROR)
18
- import tensorflow.contrib # requires TensorFlow 1.x!
19
- tf.contrib = tensorflow.contrib
20
-
21
- from typing import Any, Iterable, List, Union
22
-
23
- TfExpression = Union[tf.Tensor, tf.Variable, tf.Operation]
24
- """A type that represents a valid Tensorflow expression."""
25
-
26
- TfExpressionEx = Union[TfExpression, int, float, np.ndarray]
27
- """A type that can be converted to a valid Tensorflow expression."""
28
-
29
-
30
- def run(*args, **kwargs) -> Any:
31
- """Run the specified ops in the default session."""
32
- assert_tf_initialized()
33
- return tf.get_default_session().run(*args, **kwargs)
34
-
35
-
36
- def is_tf_expression(x: Any) -> bool:
37
- """Check whether the input is a valid Tensorflow expression, i.e., Tensorflow Tensor, Variable, or Operation."""
38
- return isinstance(x, (tf.Tensor, tf.Variable, tf.Operation))
39
-
40
-
41
- def shape_to_list(shape: Iterable[tf.Dimension]) -> List[Union[int, None]]:
42
- """Convert a Tensorflow shape to a list of ints. Retained for backwards compatibility -- use TensorShape.as_list() in new code."""
43
- return [dim.value for dim in shape]
44
-
45
-
46
- def flatten(x: TfExpressionEx) -> TfExpression:
47
- """Shortcut function for flattening a tensor."""
48
- with tf.name_scope("Flatten"):
49
- return tf.reshape(x, [-1])
50
-
51
-
52
- def log2(x: TfExpressionEx) -> TfExpression:
53
- """Logarithm in base 2."""
54
- with tf.name_scope("Log2"):
55
- return tf.log(x) * np.float32(1.0 / np.log(2.0))
56
-
57
-
58
- def exp2(x: TfExpressionEx) -> TfExpression:
59
- """Exponent in base 2."""
60
- with tf.name_scope("Exp2"):
61
- return tf.exp(x * np.float32(np.log(2.0)))
62
-
63
-
64
- def lerp(a: TfExpressionEx, b: TfExpressionEx, t: TfExpressionEx) -> TfExpressionEx:
65
- """Linear interpolation."""
66
- with tf.name_scope("Lerp"):
67
- return a + (b - a) * t
68
-
69
-
70
- def lerp_clip(a: TfExpressionEx, b: TfExpressionEx, t: TfExpressionEx) -> TfExpression:
71
- """Linear interpolation with clip."""
72
- with tf.name_scope("LerpClip"):
73
- return a + (b - a) * tf.clip_by_value(t, 0.0, 1.0)
74
-
75
-
76
- def absolute_name_scope(scope: str) -> tf.name_scope:
77
- """Forcefully enter the specified name scope, ignoring any surrounding scopes."""
78
- return tf.name_scope(scope + "/")
79
-
80
-
81
- def absolute_variable_scope(scope: str, **kwargs) -> tf.variable_scope:
82
- """Forcefully enter the specified variable scope, ignoring any surrounding scopes."""
83
- return tf.variable_scope(tf.VariableScope(name=scope, **kwargs), auxiliary_name_scope=False)
84
-
85
-
86
- def _sanitize_tf_config(config_dict: dict = None) -> dict:
87
- # Defaults.
88
- cfg = dict()
89
- cfg["rnd.np_random_seed"] = None # Random seed for NumPy. None = keep as is.
90
- cfg["rnd.tf_random_seed"] = "auto" # Random seed for TensorFlow. 'auto' = derive from NumPy random state. None = keep as is.
91
- cfg["env.TF_CPP_MIN_LOG_LEVEL"] = "1" # 0 = Print all available debug info from TensorFlow. 1 = Print warnings and errors, but disable debug info.
92
- cfg["graph_options.place_pruned_graph"] = True # False = Check that all ops are available on the designated device. True = Skip the check for ops that are not used.
93
- cfg["gpu_options.allow_growth"] = True # False = Allocate all GPU memory at the beginning. True = Allocate only as much GPU memory as needed.
94
-
95
- # Remove defaults for environment variables that are already set.
96
- for key in list(cfg):
97
- fields = key.split(".")
98
- if fields[0] == "env":
99
- assert len(fields) == 2
100
- if fields[1] in os.environ:
101
- del cfg[key]
102
-
103
- # User overrides.
104
- if config_dict is not None:
105
- cfg.update(config_dict)
106
- return cfg
107
-
108
-
109
- def init_tf(config_dict: dict = None) -> None:
110
- """Initialize TensorFlow session using good default settings."""
111
- # Skip if already initialized.
112
- if tf.get_default_session() is not None:
113
- return
114
-
115
- # Setup config dict and random seeds.
116
- cfg = _sanitize_tf_config(config_dict)
117
- np_random_seed = cfg["rnd.np_random_seed"]
118
- if np_random_seed is not None:
119
- np.random.seed(np_random_seed)
120
- tf_random_seed = cfg["rnd.tf_random_seed"]
121
- if tf_random_seed == "auto":
122
- tf_random_seed = np.random.randint(1 << 31)
123
- if tf_random_seed is not None:
124
- tf.set_random_seed(tf_random_seed)
125
-
126
- # Setup environment variables.
127
- for key, value in cfg.items():
128
- fields = key.split(".")
129
- if fields[0] == "env":
130
- assert len(fields) == 2
131
- os.environ[fields[1]] = str(value)
132
-
133
- # Create default TensorFlow session.
134
- create_session(cfg, force_as_default=True)
135
-
136
-
137
- def assert_tf_initialized():
138
- """Check that TensorFlow session has been initialized."""
139
- if tf.get_default_session() is None:
140
- raise RuntimeError("No default TensorFlow session found. Please call dnnlib.tflib.init_tf().")
141
-
142
-
143
- def create_session(config_dict: dict = None, force_as_default: bool = False) -> tf.Session:
144
- """Create tf.Session based on config dict."""
145
- # Setup TensorFlow config proto.
146
- cfg = _sanitize_tf_config(config_dict)
147
- config_proto = tf.ConfigProto()
148
- for key, value in cfg.items():
149
- fields = key.split(".")
150
- if fields[0] not in ["rnd", "env"]:
151
- obj = config_proto
152
- for field in fields[:-1]:
153
- obj = getattr(obj, field)
154
- setattr(obj, fields[-1], value)
155
-
156
- # Create session.
157
- session = tf.Session(config=config_proto)
158
- if force_as_default:
159
- # pylint: disable=protected-access
160
- session._default_session = session.as_default()
161
- session._default_session.enforce_nesting = False
162
- session._default_session.__enter__()
163
- return session
164
-
165
-
166
- def init_uninitialized_vars(target_vars: List[tf.Variable] = None) -> None:
167
- """Initialize all tf.Variables that have not already been initialized.
168
-
169
- Equivalent to the following, but more efficient and does not bloat the tf graph:
170
- tf.variables_initializer(tf.report_uninitialized_variables()).run()
171
- """
172
- assert_tf_initialized()
173
- if target_vars is None:
174
- target_vars = tf.global_variables()
175
-
176
- test_vars = []
177
- test_ops = []
178
-
179
- with tf.control_dependencies(None): # ignore surrounding control_dependencies
180
- for var in target_vars:
181
- assert is_tf_expression(var)
182
-
183
- try:
184
- tf.get_default_graph().get_tensor_by_name(var.name.replace(":0", "/IsVariableInitialized:0"))
185
- except KeyError:
186
- # Op does not exist => variable may be uninitialized.
187
- test_vars.append(var)
188
-
189
- with absolute_name_scope(var.name.split(":")[0]):
190
- test_ops.append(tf.is_variable_initialized(var))
191
-
192
- init_vars = [var for var, inited in zip(test_vars, run(test_ops)) if not inited]
193
- run([var.initializer for var in init_vars])
194
-
195
-
196
- def set_vars(var_to_value_dict: dict) -> None:
197
- """Set the values of given tf.Variables.
198
-
199
- Equivalent to the following, but more efficient and does not bloat the tf graph:
200
- tflib.run([tf.assign(var, value) for var, value in var_to_value_dict.items()]
201
- """
202
- assert_tf_initialized()
203
- ops = []
204
- feed_dict = {}
205
-
206
- for var, value in var_to_value_dict.items():
207
- assert is_tf_expression(var)
208
-
209
- try:
210
- setter = tf.get_default_graph().get_tensor_by_name(var.name.replace(":0", "/setter:0")) # look for existing op
211
- except KeyError:
212
- with absolute_name_scope(var.name.split(":")[0]):
213
- with tf.control_dependencies(None): # ignore surrounding control_dependencies
214
- setter = tf.assign(var, tf.placeholder(var.dtype, var.shape, "new_value"), name="setter") # create new setter
215
-
216
- ops.append(setter)
217
- feed_dict[setter.op.inputs[1]] = value
218
-
219
- run(ops, feed_dict)
220
-
221
-
222
- def create_var_with_large_initial_value(initial_value: np.ndarray, *args, **kwargs):
223
- """Create tf.Variable with large initial value without bloating the tf graph."""
224
- assert_tf_initialized()
225
- assert isinstance(initial_value, np.ndarray)
226
- zeros = tf.zeros(initial_value.shape, initial_value.dtype)
227
- var = tf.Variable(zeros, *args, **kwargs)
228
- set_vars({var: initial_value})
229
- return var
230
-
231
-
232
- def convert_images_from_uint8(images, drange=[-1,1], nhwc_to_nchw=False):
233
- """Convert a minibatch of images from uint8 to float32 with configurable dynamic range.
234
- Can be used as an input transformation for Network.run().
235
- """
236
- images = tf.cast(images, tf.float32)
237
- if nhwc_to_nchw:
238
- images = tf.transpose(images, [0, 3, 1, 2])
239
- return images * ((drange[1] - drange[0]) / 255) + drange[0]
240
-
241
-
242
- def convert_images_to_uint8(images, drange=[-1,1], nchw_to_nhwc=False, shrink=1):
243
- """Convert a minibatch of images from float32 to uint8 with configurable dynamic range.
244
- Can be used as an output transformation for Network.run().
245
- """
246
- images = tf.cast(images, tf.float32)
247
- if shrink > 1:
248
- ksize = [1, 1, shrink, shrink]
249
- images = tf.nn.avg_pool(images, ksize=ksize, strides=ksize, padding="VALID", data_format="NCHW")
250
- if nchw_to_nhwc:
251
- images = tf.transpose(images, [0, 2, 3, 1])
252
- scale = 255 / (drange[1] - drange[0])
253
- images = images * scale + (0.5 - drange[0] * scale)
254
- return tf.saturate_cast(images, tf.uint8)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/dnnlib/util.py DELETED
@@ -1,479 +0,0 @@
1
- # Copyright (c) SenseTime Research. All rights reserved.
2
- # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
3
- #
4
- # NVIDIA CORPORATION and its licensors retain all intellectual property
5
- # and proprietary rights in and to this software, related documentation
6
- # and any modifications thereto. Any use, reproduction, disclosure or
7
- # distribution of this software and related documentation without an express
8
- # license agreement from NVIDIA CORPORATION is strictly prohibited.
9
-
10
- """Miscellaneous utility classes and functions."""
11
-
12
- import ctypes
13
- import fnmatch
14
- import importlib
15
- import inspect
16
- import numpy as np
17
- import os
18
- import shutil
19
- import sys
20
- import types
21
- import io
22
- import pickle
23
- import re
24
- import requests
25
- import html
26
- import hashlib
27
- import glob
28
- import tempfile
29
- import urllib
30
- import urllib.request
31
- import uuid
32
-
33
- from distutils.util import strtobool
34
- from typing import Any, List, Tuple, Union
35
-
36
-
37
- # Util classes
38
- # ------------------------------------------------------------------------------------------
39
-
40
-
41
- class EasyDict(dict):
42
- """Convenience class that behaves like a dict but allows access with the attribute syntax."""
43
-
44
- def __getattr__(self, name: str) -> Any:
45
- try:
46
- return self[name]
47
- except KeyError:
48
- raise AttributeError(name)
49
-
50
- def __setattr__(self, name: str, value: Any) -> None:
51
- self[name] = value
52
-
53
- def __delattr__(self, name: str) -> None:
54
- del self[name]
55
-
56
-
57
- class Logger(object):
58
- """Redirect stderr to stdout, optionally print stdout to a file, and optionally force flushing on both stdout and the file."""
59
-
60
- def __init__(self, file_name: str = None, file_mode: str = "w", should_flush: bool = True):
61
- self.file = None
62
-
63
- if file_name is not None:
64
- self.file = open(file_name, file_mode)
65
-
66
- self.should_flush = should_flush
67
- self.stdout = sys.stdout
68
- self.stderr = sys.stderr
69
-
70
- sys.stdout = self
71
- sys.stderr = self
72
-
73
- def __enter__(self) -> "Logger":
74
- return self
75
-
76
- def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
77
- self.close()
78
-
79
- def write(self, text: Union[str, bytes]) -> None:
80
- """Write text to stdout (and a file) and optionally flush."""
81
- if isinstance(text, bytes):
82
- text = text.decode()
83
- if len(text) == 0: # workaround for a bug in VSCode debugger: sys.stdout.write(''); sys.stdout.flush() => crash
84
- return
85
-
86
- if self.file is not None:
87
- self.file.write(text)
88
-
89
- self.stdout.write(text)
90
-
91
- if self.should_flush:
92
- self.flush()
93
-
94
- def flush(self) -> None:
95
- """Flush written text to both stdout and a file, if open."""
96
- if self.file is not None:
97
- self.file.flush()
98
-
99
- self.stdout.flush()
100
-
101
- def close(self) -> None:
102
- """Flush, close possible files, and remove stdout/stderr mirroring."""
103
- self.flush()
104
-
105
- # if using multiple loggers, prevent closing in wrong order
106
- if sys.stdout is self:
107
- sys.stdout = self.stdout
108
- if sys.stderr is self:
109
- sys.stderr = self.stderr
110
-
111
- if self.file is not None:
112
- self.file.close()
113
- self.file = None
114
-
115
-
116
- # Cache directories
117
- # ------------------------------------------------------------------------------------------
118
-
119
- _dnnlib_cache_dir = None
120
-
121
- def set_cache_dir(path: str) -> None:
122
- global _dnnlib_cache_dir
123
- _dnnlib_cache_dir = path
124
-
125
- def make_cache_dir_path(*paths: str) -> str:
126
- if _dnnlib_cache_dir is not None:
127
- return os.path.join(_dnnlib_cache_dir, *paths)
128
- if 'DNNLIB_CACHE_DIR' in os.environ:
129
- return os.path.join(os.environ['DNNLIB_CACHE_DIR'], *paths)
130
- if 'HOME' in os.environ:
131
- return os.path.join(os.environ['HOME'], '.cache', 'dnnlib', *paths)
132
- if 'USERPROFILE' in os.environ:
133
- return os.path.join(os.environ['USERPROFILE'], '.cache', 'dnnlib', *paths)
134
- return os.path.join(tempfile.gettempdir(), '.cache', 'dnnlib', *paths)
135
-
136
- # Small util functions
137
- # ------------------------------------------------------------------------------------------
138
-
139
-
140
- def format_time(seconds: Union[int, float]) -> str:
141
- """Convert the seconds to human readable string with days, hours, minutes and seconds."""
142
- s = int(np.rint(seconds))
143
-
144
- if s < 60:
145
- return "{0}s".format(s)
146
- elif s < 60 * 60:
147
- return "{0}m {1:02}s".format(s // 60, s % 60)
148
- elif s < 24 * 60 * 60:
149
- return "{0}h {1:02}m {2:02}s".format(s // (60 * 60), (s // 60) % 60, s % 60)
150
- else:
151
- return "{0}d {1:02}h {2:02}m".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24, (s // 60) % 60)
152
-
153
-
154
- def ask_yes_no(question: str) -> bool:
155
- """Ask the user the question until the user inputs a valid answer."""
156
- while True:
157
- try:
158
- print("{0} [y/n]".format(question))
159
- return strtobool(input().lower())
160
- except ValueError:
161
- pass
162
-
163
-
164
- def tuple_product(t: Tuple) -> Any:
165
- """Calculate the product of the tuple elements."""
166
- result = 1
167
-
168
- for v in t:
169
- result *= v
170
-
171
- return result
172
-
173
-
174
- _str_to_ctype = {
175
- "uint8": ctypes.c_ubyte,
176
- "uint16": ctypes.c_uint16,
177
- "uint32": ctypes.c_uint32,
178
- "uint64": ctypes.c_uint64,
179
- "int8": ctypes.c_byte,
180
- "int16": ctypes.c_int16,
181
- "int32": ctypes.c_int32,
182
- "int64": ctypes.c_int64,
183
- "float32": ctypes.c_float,
184
- "float64": ctypes.c_double
185
- }
186
-
187
-
188
- def get_dtype_and_ctype(type_obj: Any) -> Tuple[np.dtype, Any]:
189
- """Given a type name string (or an object having a __name__ attribute), return matching Numpy and ctypes types that have the same size in bytes."""
190
- type_str = None
191
-
192
- if isinstance(type_obj, str):
193
- type_str = type_obj
194
- elif hasattr(type_obj, "__name__"):
195
- type_str = type_obj.__name__
196
- elif hasattr(type_obj, "name"):
197
- type_str = type_obj.name
198
- else:
199
- raise RuntimeError("Cannot infer type name from input")
200
-
201
- assert type_str in _str_to_ctype.keys()
202
-
203
- my_dtype = np.dtype(type_str)
204
- my_ctype = _str_to_ctype[type_str]
205
-
206
- assert my_dtype.itemsize == ctypes.sizeof(my_ctype)
207
-
208
- return my_dtype, my_ctype
209
-
210
-
211
- def is_pickleable(obj: Any) -> bool:
212
- try:
213
- with io.BytesIO() as stream:
214
- pickle.dump(obj, stream)
215
- return True
216
- except:
217
- return False
218
-
219
-
220
- # Functionality to import modules/objects by name, and call functions by name
221
- # ------------------------------------------------------------------------------------------
222
-
223
- def get_module_from_obj_name(obj_name: str) -> Tuple[types.ModuleType, str]:
224
- """Searches for the underlying module behind the name to some python object.
225
- Returns the module and the object name (original name with module part removed)."""
226
-
227
- # allow convenience shorthands, substitute them by full names
228
- obj_name = re.sub("^np.", "numpy.", obj_name)
229
- obj_name = re.sub("^tf.", "tensorflow.", obj_name)
230
-
231
- # list alternatives for (module_name, local_obj_name)
232
- parts = obj_name.split(".")
233
- name_pairs = [(".".join(parts[:i]), ".".join(parts[i:])) for i in range(len(parts), 0, -1)]
234
-
235
- # try each alternative in turn
236
- for module_name, local_obj_name in name_pairs:
237
- try:
238
- module = importlib.import_module(module_name) # may raise ImportError
239
- get_obj_from_module(module, local_obj_name) # may raise AttributeError
240
- return module, local_obj_name
241
- except:
242
- pass
243
-
244
- # maybe some of the modules themselves contain errors?
245
- for module_name, _local_obj_name in name_pairs:
246
- try:
247
- importlib.import_module(module_name) # may raise ImportError
248
- except ImportError:
249
- if not str(sys.exc_info()[1]).startswith("No module named '" + module_name + "'"):
250
- raise
251
-
252
- # maybe the requested attribute is missing?
253
- for module_name, local_obj_name in name_pairs:
254
- try:
255
- module = importlib.import_module(module_name) # may raise ImportError
256
- get_obj_from_module(module, local_obj_name) # may raise AttributeError
257
- except ImportError:
258
- pass
259
-
260
- # we are out of luck, but we have no idea why
261
- raise ImportError(obj_name)
262
-
263
-
264
- def get_obj_from_module(module: types.ModuleType, obj_name: str) -> Any:
265
- """Traverses the object name and returns the last (rightmost) python object."""
266
- if obj_name == '':
267
- return module
268
- obj = module
269
- for part in obj_name.split("."):
270
- obj = getattr(obj, part)
271
- return obj
272
-
273
-
274
- def get_obj_by_name(name: str) -> Any:
275
- """Finds the python object with the given name."""
276
- module, obj_name = get_module_from_obj_name(name)
277
- return get_obj_from_module(module, obj_name)
278
-
279
-
280
- def call_func_by_name(*args, func_name: str = None, **kwargs) -> Any:
281
- """Finds the python object with the given name and calls it as a function."""
282
- assert func_name is not None
283
- # print('func_name: ', func_name) #'training.dataset.ImageFolderDataset'
284
- func_obj = get_obj_by_name(func_name)
285
- assert callable(func_obj)
286
- return func_obj(*args, **kwargs)
287
-
288
-
289
- def construct_class_by_name(*args, class_name: str = None, **kwargs) -> Any:
290
- """Finds the python class with the given name and constructs it with the given arguments."""
291
- return call_func_by_name(*args, func_name=class_name, **kwargs)
292
-
293
-
294
- def get_module_dir_by_obj_name(obj_name: str) -> str:
295
- """Get the directory path of the module containing the given object name."""
296
- module, _ = get_module_from_obj_name(obj_name)
297
- return os.path.dirname(inspect.getfile(module))
298
-
299
-
300
- def is_top_level_function(obj: Any) -> bool:
301
- """Determine whether the given object is a top-level function, i.e., defined at module scope using 'def'."""
302
- return callable(obj) and obj.__name__ in sys.modules[obj.__module__].__dict__
303
-
304
-
305
- def get_top_level_function_name(obj: Any) -> str:
306
- """Return the fully-qualified name of a top-level function."""
307
- assert is_top_level_function(obj)
308
- module = obj.__module__
309
- if module == '__main__':
310
- module = os.path.splitext(os.path.basename(sys.modules[module].__file__))[0]
311
- return module + "." + obj.__name__
312
-
313
-
314
- # File system helpers
315
- # ------------------------------------------------------------------------------------------
316
-
317
- def list_dir_recursively_with_ignore(dir_path: str, ignores: List[str] = None, add_base_to_relative: bool = False) -> List[Tuple[str, str]]:
318
- """List all files recursively in a given directory while ignoring given file and directory names.
319
- Returns list of tuples containing both absolute and relative paths."""
320
- assert os.path.isdir(dir_path)
321
- base_name = os.path.basename(os.path.normpath(dir_path))
322
-
323
- if ignores is None:
324
- ignores = []
325
-
326
- result = []
327
-
328
- for root, dirs, files in os.walk(dir_path, topdown=True):
329
- for ignore_ in ignores:
330
- dirs_to_remove = [d for d in dirs if fnmatch.fnmatch(d, ignore_)]
331
-
332
- # dirs need to be edited in-place
333
- for d in dirs_to_remove:
334
- dirs.remove(d)
335
-
336
- files = [f for f in files if not fnmatch.fnmatch(f, ignore_)]
337
-
338
- absolute_paths = [os.path.join(root, f) for f in files]
339
- relative_paths = [os.path.relpath(p, dir_path) for p in absolute_paths]
340
-
341
- if add_base_to_relative:
342
- relative_paths = [os.path.join(base_name, p) for p in relative_paths]
343
-
344
- assert len(absolute_paths) == len(relative_paths)
345
- result += zip(absolute_paths, relative_paths)
346
-
347
- return result
348
-
349
-
350
- def copy_files_and_create_dirs(files: List[Tuple[str, str]]) -> None:
351
- """Takes in a list of tuples of (src, dst) paths and copies files.
352
- Will create all necessary directories."""
353
- for file in files:
354
- target_dir_name = os.path.dirname(file[1])
355
-
356
- # will create all intermediate-level directories
357
- if not os.path.exists(target_dir_name):
358
- os.makedirs(target_dir_name)
359
-
360
- shutil.copyfile(file[0], file[1])
361
-
362
-
363
- # URL helpers
364
- # ------------------------------------------------------------------------------------------
365
-
366
- def is_url(obj: Any, allow_file_urls: bool = False) -> bool:
367
- """Determine whether the given object is a valid URL string."""
368
- if not isinstance(obj, str) or not "://" in obj:
369
- return False
370
- if allow_file_urls and obj.startswith('file://'):
371
- return True
372
- try:
373
- res = requests.compat.urlparse(obj)
374
- if not res.scheme or not res.netloc or not "." in res.netloc:
375
- return False
376
- res = requests.compat.urlparse(requests.compat.urljoin(obj, "/"))
377
- if not res.scheme or not res.netloc or not "." in res.netloc:
378
- return False
379
- except:
380
- return False
381
- return True
382
-
383
-
384
- def open_url(url: str, cache_dir: str = None, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False, cache: bool = True) -> Any:
385
- """Download the given URL and return a binary-mode file object to access the data."""
386
- assert num_attempts >= 1
387
- assert not (return_filename and (not cache))
388
-
389
- # Doesn't look like an URL scheme so interpret it as a local filename.
390
- if not re.match('^[a-z]+://', url):
391
- return url if return_filename else open(url, "rb")
392
-
393
- # Handle file URLs. This code handles unusual file:// patterns that
394
- # arise on Windows:
395
- #
396
- # file:///c:/foo.txt
397
- #
398
- # which would translate to a local '/c:/foo.txt' filename that's
399
- # invalid. Drop the forward slash for such pathnames.
400
- #
401
- # If you touch this code path, you should test it on both Linux and
402
- # Windows.
403
- #
404
- # Some internet resources suggest using urllib.request.url2pathname() but
405
- # but that converts forward slashes to backslashes and this causes
406
- # its own set of problems.
407
- if url.startswith('file://'):
408
- filename = urllib.parse.urlparse(url).path
409
- if re.match(r'^/[a-zA-Z]:', filename):
410
- filename = filename[1:]
411
- return filename if return_filename else open(filename, "rb")
412
-
413
- assert is_url(url)
414
-
415
- # Lookup from cache.
416
- if cache_dir is None:
417
- cache_dir = make_cache_dir_path('downloads')
418
-
419
- url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest()
420
- if cache:
421
- cache_files = glob.glob(os.path.join(cache_dir, url_md5 + "_*"))
422
- if len(cache_files) == 1:
423
- filename = cache_files[0]
424
- return filename if return_filename else open(filename, "rb")
425
-
426
- # Download.
427
- url_name = None
428
- url_data = None
429
- with requests.Session() as session:
430
- if verbose:
431
- print("Downloading %s ..." % url, end="", flush=True)
432
- for attempts_left in reversed(range(num_attempts)):
433
- try:
434
- with session.get(url) as res:
435
- res.raise_for_status()
436
- if len(res.content) == 0:
437
- raise IOError("No data received")
438
-
439
- if len(res.content) < 8192:
440
- content_str = res.content.decode("utf-8")
441
- if "download_warning" in res.headers.get("Set-Cookie", ""):
442
- links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link]
443
- if len(links) == 1:
444
- url = requests.compat.urljoin(url, links[0])
445
- raise IOError("Google Drive virus checker nag")
446
- if "Google Drive - Quota exceeded" in content_str:
447
- raise IOError("Google Drive download quota exceeded -- please try again later")
448
-
449
- match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", ""))
450
- url_name = match[1] if match else url
451
- url_data = res.content
452
- if verbose:
453
- print(" done")
454
- break
455
- except KeyboardInterrupt:
456
- raise
457
- except:
458
- if not attempts_left:
459
- if verbose:
460
- print(" failed")
461
- raise
462
- if verbose:
463
- print(".", end="", flush=True)
464
-
465
- # Save to cache.
466
- if cache:
467
- safe_name = re.sub(r"[^0-9a-zA-Z-._]", "_", url_name)
468
- cache_file = os.path.join(cache_dir, url_md5 + "_" + safe_name)
469
- temp_file = os.path.join(cache_dir, "tmp_" + uuid.uuid4().hex + "_" + url_md5 + "_" + safe_name)
470
- os.makedirs(cache_dir, exist_ok=True)
471
- with open(temp_file, "wb") as f:
472
- f.write(url_data)
473
- os.replace(temp_file, cache_file) # atomic
474
- if return_filename:
475
- return cache_file
476
-
477
- # Return data as file object.
478
- assert not return_filename
479
- return io.BytesIO(url_data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/losses/color_transfer_loss.py DELETED
@@ -1,60 +0,0 @@
1
- from typing import List, Optional
2
-
3
- import torch
4
- from torch import nn
5
- from torch.nn.functional import (
6
- smooth_l1_loss,
7
- )
8
-
9
-
10
- def flatten_CHW(im: torch.Tensor) -> torch.Tensor:
11
- """
12
- (B, C, H, W) -> (B, -1)
13
- """
14
- B = im.shape[0]
15
- return im.reshape(B, -1)
16
-
17
-
18
- def stddev(x: torch.Tensor) -> torch.Tensor:
19
- """
20
- x: (B, -1), assume with mean normalized
21
- Retuens:
22
- stddev: (B)
23
- """
24
- return torch.sqrt(torch.mean(x * x, dim=-1))
25
-
26
-
27
- def gram_matrix(input_):
28
- B, C = input_.shape[:2]
29
- features = input_.view(B, C, -1)
30
- N = features.shape[-1]
31
- G = torch.bmm(features, features.transpose(1, 2)) # C x C
32
- return G.div(C * N)
33
-
34
-
35
- class ColorTransferLoss(nn.Module):
36
- """Penalize the gram matrix difference between StyleGAN2's ToRGB outputs"""
37
- def __init__(
38
- self,
39
- init_rgbs,
40
- scale_rgb: bool = False
41
- ):
42
- super().__init__()
43
-
44
- with torch.no_grad():
45
- init_feats = [x.detach() for x in init_rgbs]
46
- self.stds = [stddev(flatten_CHW(rgb)) if scale_rgb else 1 for rgb in init_feats] # (B, 1, 1, 1) or scalar
47
- self.grams = [gram_matrix(rgb / std) for rgb, std in zip(init_feats, self.stds)]
48
-
49
- def forward(self, rgbs: List[torch.Tensor], level: int = None):
50
- if level is None:
51
- level = len(self.grams)
52
-
53
- feats = rgbs
54
- loss = 0
55
- for i, (rgb, std) in enumerate(zip(feats[:level], self.stds[:level])):
56
- G = gram_matrix(rgb / std)
57
- loss = loss + smooth_l1_loss(G, self.grams[i])
58
-
59
- return loss
60
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/losses/contextual_loss/.gitignore DELETED
@@ -1,104 +0,0 @@
1
- # Byte-compiled / optimized / DLL files
2
- __pycache__/
3
- *.py[cod]
4
- *$py.class
5
-
6
- # C extensions
7
- *.so
8
-
9
- # Distribution / packaging
10
- .Python
11
- build/
12
- develop-eggs/
13
- dist/
14
- downloads/
15
- eggs/
16
- .eggs/
17
- lib/
18
- lib64/
19
- parts/
20
- sdist/
21
- var/
22
- wheels/
23
- *.egg-info/
24
- .installed.cfg
25
- *.egg
26
- MANIFEST
27
-
28
- # PyInstaller
29
- # Usually these files are written by a python script from a template
30
- # before PyInstaller builds the exe, so as to inject date/other infos into it.
31
- *.manifest
32
- *.spec
33
-
34
- # Installer logs
35
- pip-log.txt
36
- pip-delete-this-directory.txt
37
-
38
- # Unit test / coverage reports
39
- htmlcov/
40
- .tox/
41
- .coverage
42
- .coverage.*
43
- .cache
44
- nosetests.xml
45
- coverage.xml
46
- *.cover
47
- .hypothesis/
48
- .pytest_cache/
49
-
50
- # Translations
51
- *.mo
52
- *.pot
53
-
54
- # Django stuff:
55
- *.log
56
- local_settings.py
57
- db.sqlite3
58
-
59
- # Flask stuff:
60
- instance/
61
- .webassets-cache
62
-
63
- # Scrapy stuff:
64
- .scrapy
65
-
66
- # Sphinx documentation
67
- docs/_build/
68
-
69
- # PyBuilder
70
- target/
71
-
72
- # Jupyter Notebook
73
- .ipynb_checkpoints
74
-
75
- # pyenv
76
- .python-version
77
-
78
- # celery beat schedule file
79
- celerybeat-schedule
80
-
81
- # SageMath parsed files
82
- *.sage.py
83
-
84
- # Environments
85
- .env
86
- .venv
87
- env/
88
- venv/
89
- ENV/
90
- env.bak/
91
- venv.bak/
92
-
93
- # Spyder project settings
94
- .spyderproject
95
- .spyproject
96
-
97
- # Rope project settings
98
- .ropeproject
99
-
100
- # mkdocs documentation
101
- /site
102
-
103
- # mypy
104
- .mypy_cache/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/losses/contextual_loss/LICENSE DELETED
@@ -1,21 +0,0 @@
1
- MIT License
2
-
3
- Copyright (c) 2019 Sou Uchida
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/losses/contextual_loss/__init__.py DELETED
@@ -1 +0,0 @@
1
- from .modules import *
 
 
Time_TravelRephotography/losses/contextual_loss/config.py DELETED
@@ -1,2 +0,0 @@
1
- # TODO: add supports for L1, L2 etc.
2
- LOSS_TYPES = ['cosine', 'l1', 'l2']
 
 
 
Time_TravelRephotography/losses/contextual_loss/functional.py DELETED
@@ -1,198 +0,0 @@
1
- import torch
2
- import torch.nn.functional as F
3
-
4
- from .config import LOSS_TYPES
5
-
6
- __all__ = ['contextual_loss', 'contextual_bilateral_loss']
7
-
8
-
9
- def contextual_loss(x: torch.Tensor,
10
- y: torch.Tensor,
11
- band_width: float = 0.5,
12
- loss_type: str = 'cosine',
13
- all_dist: bool = False):
14
- """
15
- Computes contextual loss between x and y.
16
- The most of this code is copied from
17
- https://gist.github.com/yunjey/3105146c736f9c1055463c33b4c989da.
18
-
19
- Parameters
20
- ---
21
- x : torch.Tensor
22
- features of shape (N, C, H, W).
23
- y : torch.Tensor
24
- features of shape (N, C, H, W).
25
- band_width : float, optional
26
- a band-width parameter used to convert distance to similarity.
27
- in the paper, this is described as :math:`h`.
28
- loss_type : str, optional
29
- a loss type to measure the distance between features.
30
- Note: `l1` and `l2` frequently raises OOM.
31
-
32
- Returns
33
- ---
34
- cx_loss : torch.Tensor
35
- contextual loss between x and y (Eq (1) in the paper)
36
- """
37
-
38
- assert x.size() == y.size(), 'input tensor must have the same size.'
39
- assert loss_type in LOSS_TYPES, f'select a loss type from {LOSS_TYPES}.'
40
-
41
- N, C, H, W = x.size()
42
-
43
- if loss_type == 'cosine':
44
- dist_raw = compute_cosine_distance(x, y)
45
- elif loss_type == 'l1':
46
- dist_raw = compute_l1_distance(x, y)
47
- elif loss_type == 'l2':
48
- dist_raw = compute_l2_distance(x, y)
49
-
50
- dist_tilde = compute_relative_distance(dist_raw)
51
- cx = compute_cx(dist_tilde, band_width)
52
- if all_dist:
53
- return cx
54
-
55
- cx = torch.mean(torch.max(cx, dim=1)[0], dim=1) # Eq(1)
56
- cx_loss = torch.mean(-torch.log(cx + 1e-5)) # Eq(5)
57
-
58
- return cx_loss
59
-
60
-
61
- # TODO: Operation check
62
- def contextual_bilateral_loss(x: torch.Tensor,
63
- y: torch.Tensor,
64
- weight_sp: float = 0.1,
65
- band_width: float = 1.,
66
- loss_type: str = 'cosine'):
67
- """
68
- Computes Contextual Bilateral (CoBi) Loss between x and y,
69
- proposed in https://arxiv.org/pdf/1905.05169.pdf.
70
-
71
- Parameters
72
- ---
73
- x : torch.Tensor
74
- features of shape (N, C, H, W).
75
- y : torch.Tensor
76
- features of shape (N, C, H, W).
77
- band_width : float, optional
78
- a band-width parameter used to convert distance to similarity.
79
- in the paper, this is described as :math:`h`.
80
- loss_type : str, optional
81
- a loss type to measure the distance between features.
82
- Note: `l1` and `l2` frequently raises OOM.
83
-
84
- Returns
85
- ---
86
- cx_loss : torch.Tensor
87
- contextual loss between x and y (Eq (1) in the paper).
88
- k_arg_max_NC : torch.Tensor
89
- indices to maximize similarity over channels.
90
- """
91
-
92
- assert x.size() == y.size(), 'input tensor must have the same size.'
93
- assert loss_type in LOSS_TYPES, f'select a loss type from {LOSS_TYPES}.'
94
-
95
- # spatial loss
96
- grid = compute_meshgrid(x.shape).to(x.device)
97
- dist_raw = compute_l2_distance(grid, grid)
98
- dist_tilde = compute_relative_distance(dist_raw)
99
- cx_sp = compute_cx(dist_tilde, band_width)
100
-
101
- # feature loss
102
- if loss_type == 'cosine':
103
- dist_raw = compute_cosine_distance(x, y)
104
- elif loss_type == 'l1':
105
- dist_raw = compute_l1_distance(x, y)
106
- elif loss_type == 'l2':
107
- dist_raw = compute_l2_distance(x, y)
108
- dist_tilde = compute_relative_distance(dist_raw)
109
- cx_feat = compute_cx(dist_tilde, band_width)
110
-
111
- # combined loss
112
- cx_combine = (1. - weight_sp) * cx_feat + weight_sp * cx_sp
113
-
114
- k_max_NC, _ = torch.max(cx_combine, dim=2, keepdim=True)
115
-
116
- cx = k_max_NC.mean(dim=1)
117
- cx_loss = torch.mean(-torch.log(cx + 1e-5))
118
-
119
- return cx_loss
120
-
121
-
122
- def compute_cx(dist_tilde, band_width):
123
- w = torch.exp((1 - dist_tilde) / band_width) # Eq(3)
124
- cx = w / torch.sum(w, dim=2, keepdim=True) # Eq(4)
125
- return cx
126
-
127
-
128
- def compute_relative_distance(dist_raw):
129
- dist_min, _ = torch.min(dist_raw, dim=2, keepdim=True)
130
- dist_tilde = dist_raw / (dist_min + 1e-5)
131
- return dist_tilde
132
-
133
-
134
- def compute_cosine_distance(x, y):
135
- # mean shifting by channel-wise mean of `y`.
136
- y_mu = y.mean(dim=(0, 2, 3), keepdim=True)
137
- x_centered = x - y_mu
138
- y_centered = y - y_mu
139
-
140
- # L2 normalization
141
- x_normalized = F.normalize(x_centered, p=2, dim=1)
142
- y_normalized = F.normalize(y_centered, p=2, dim=1)
143
-
144
- # channel-wise vectorization
145
- N, C, *_ = x.size()
146
- x_normalized = x_normalized.reshape(N, C, -1) # (N, C, H*W)
147
- y_normalized = y_normalized.reshape(N, C, -1) # (N, C, H*W)
148
-
149
- # consine similarity
150
- cosine_sim = torch.bmm(x_normalized.transpose(1, 2),
151
- y_normalized) # (N, H*W, H*W)
152
-
153
- # convert to distance
154
- dist = 1 - cosine_sim
155
-
156
- return dist
157
-
158
-
159
- # TODO: Considering avoiding OOM.
160
- def compute_l1_distance(x: torch.Tensor, y: torch.Tensor):
161
- N, C, H, W = x.size()
162
- x_vec = x.view(N, C, -1)
163
- y_vec = y.view(N, C, -1)
164
-
165
- dist = x_vec.unsqueeze(2) - y_vec.unsqueeze(3)
166
- dist = dist.abs().sum(dim=1)
167
- dist = dist.transpose(1, 2).reshape(N, H*W, H*W)
168
- dist = dist.clamp(min=0.)
169
-
170
- return dist
171
-
172
-
173
- # TODO: Considering avoiding OOM.
174
- def compute_l2_distance(x, y):
175
- N, C, H, W = x.size()
176
- x_vec = x.view(N, C, -1)
177
- y_vec = y.view(N, C, -1)
178
- x_s = torch.sum(x_vec ** 2, dim=1)
179
- y_s = torch.sum(y_vec ** 2, dim=1)
180
-
181
- A = y_vec.transpose(1, 2) @ x_vec
182
- dist = y_s - 2 * A + x_s.transpose(0, 1)
183
- dist = dist.transpose(1, 2).reshape(N, H*W, H*W)
184
- dist = dist.clamp(min=0.)
185
-
186
- return dist
187
-
188
-
189
- def compute_meshgrid(shape):
190
- N, C, H, W = shape
191
- rows = torch.arange(0, H, dtype=torch.float32) / (H + 1)
192
- cols = torch.arange(0, W, dtype=torch.float32) / (W + 1)
193
-
194
- feature_grid = torch.meshgrid(rows, cols)
195
- feature_grid = torch.stack(feature_grid).unsqueeze(0)
196
- feature_grid = torch.cat([feature_grid for _ in range(N)], dim=0)
197
-
198
- return feature_grid
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/losses/contextual_loss/modules/__init__.py DELETED
@@ -1,5 +0,0 @@
1
- from .contextual import ContextualLoss
2
- from .contextual_bilateral import ContextualBilateralLoss
3
- from .vgg import VGG19
4
-
5
- __all__ = ['ContextualLoss', 'ContextualBilateralLoss', 'VGG19']
 
 
 
 
 
 
Time_TravelRephotography/losses/contextual_loss/modules/contextual.py DELETED
@@ -1,122 +0,0 @@
1
- import random
2
- from typing import (
3
- Iterable,
4
- List,
5
- Optional,
6
- )
7
-
8
- import numpy as np
9
- import torch
10
- import torch.nn as nn
11
-
12
- from .vgg import VGG19
13
- from .. import functional as F
14
- from ..config import LOSS_TYPES
15
-
16
-
17
- class ContextualLoss(nn.Module):
18
- """
19
- Creates a criterion that measures the contextual loss.
20
-
21
- Parameters
22
- ---
23
- band_width : int, optional
24
- a band_width parameter described as :math:`h` in the paper.
25
- use_vgg : bool, optional
26
- if you want to use VGG feature, set this `True`.
27
- vgg_layer : str, optional
28
- intermidiate layer name for VGG feature.
29
- Now we support layer names:
30
- `['relu1_2', 'relu2_2', 'relu3_4', 'relu4_4', 'relu5_4']`
31
- """
32
-
33
- def __init__(
34
- self,
35
- band_width: float = 0.5,
36
- loss_type: str = 'cosine',
37
- use_vgg: bool = False,
38
- vgg_model: nn.Module = None,
39
- vgg_layers: List[str] = ['relu3_4'],
40
- feature_1d_size: int = 64,
41
- ):
42
-
43
- super().__init__()
44
-
45
- assert band_width > 0, 'band_width parameter must be positive.'
46
- assert loss_type in LOSS_TYPES,\
47
- f'select a loss type from {LOSS_TYPES}.'
48
-
49
- self.loss_type = loss_type
50
- self.band_width = band_width
51
- self.feature_1d_size = feature_1d_size
52
-
53
- if use_vgg:
54
- self.vgg_model = VGG19() if vgg_model is None else vgg_model
55
- self.vgg_layers = vgg_layers
56
- self.register_buffer(
57
- name='vgg_mean',
58
- tensor=torch.tensor(
59
- [[[0.485]], [[0.456]], [[0.406]]], requires_grad=False)
60
- )
61
- self.register_buffer(
62
- name='vgg_std',
63
- tensor=torch.tensor(
64
- [[[0.229]], [[0.224]], [[0.225]]], requires_grad=False)
65
- )
66
-
67
- def forward(self, x: torch.Tensor, y: torch.Tensor, all_dist: bool = False):
68
- if not hasattr(self, 'vgg_model'):
69
- return self.contextual_loss(x, y, self.feature_1d_size, self.band_width, all_dist=all_dist)
70
-
71
-
72
- x = self.forward_vgg(x)
73
- y = self.forward_vgg(y)
74
-
75
- loss = 0
76
- for layer in self.vgg_layers:
77
- # picking up vgg feature maps
78
- fx = getattr(x, layer)
79
- fy = getattr(y, layer)
80
- loss = loss + self.contextual_loss(
81
- fx, fy, self.feature_1d_size, self.band_width, all_dist=all_dist, loss_type=self.loss_type
82
- )
83
- return loss
84
-
85
- def forward_vgg(self, x: torch.Tensor):
86
- assert x.shape[1] == 3, 'VGG model takes 3 chennel images.'
87
- # [-1, 1] -> [0, 1]
88
- x = (x + 1) * 0.5
89
-
90
- # normalization
91
- x = x.sub(self.vgg_mean.detach()).div(self.vgg_std)
92
- return self.vgg_model(x)
93
-
94
- @classmethod
95
- def contextual_loss(
96
- cls,
97
- x: torch.Tensor, y: torch.Tensor,
98
- feature_1d_size: int,
99
- band_width: int,
100
- all_dist: bool = False,
101
- loss_type: str = 'cosine',
102
- ) -> torch.Tensor:
103
- feature_size = feature_1d_size ** 2
104
- if np.prod(x.shape[2:]) > feature_size or np.prod(y.shape[2:]) > feature_size:
105
- x, indices = cls.random_sampling(x, feature_1d_size=feature_1d_size)
106
- y, _ = cls.random_sampling(y, feature_1d_size=feature_1d_size, indices=indices)
107
-
108
- return F.contextual_loss(x, y, band_width, all_dist=all_dist, loss_type=loss_type)
109
-
110
- @staticmethod
111
- def random_sampling(
112
- tensor_NCHW: torch.Tensor, feature_1d_size: int, indices: Optional[List] = None
113
- ):
114
- N, C, H, W = tensor_NCHW.shape
115
- S = H * W
116
- tensor_NCS = tensor_NCHW.reshape([N, C, S])
117
- if indices is None:
118
- all_indices = list(range(S))
119
- random.shuffle(all_indices)
120
- indices = all_indices[:feature_1d_size**2]
121
- res = tensor_NCS[:, :, indices].reshape(N, -1, feature_1d_size, feature_1d_size)
122
- return res, indices
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/losses/contextual_loss/modules/contextual_bilateral.py DELETED
@@ -1,69 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
-
4
- from .vgg import VGG19
5
- from .. import functional as F
6
- from ..config import LOSS_TYPES
7
-
8
-
9
- class ContextualBilateralLoss(nn.Module):
10
- """
11
- Creates a criterion that measures the contextual bilateral loss.
12
-
13
- Parameters
14
- ---
15
- weight_sp : float, optional
16
- a balancing weight between spatial and feature loss.
17
- band_width : int, optional
18
- a band_width parameter described as :math:`h` in the paper.
19
- use_vgg : bool, optional
20
- if you want to use VGG feature, set this `True`.
21
- vgg_layer : str, optional
22
- intermidiate layer name for VGG feature.
23
- Now we support layer names:
24
- `['relu1_2', 'relu2_2', 'relu3_4', 'relu4_4', 'relu5_4']`
25
- """
26
-
27
- def __init__(self,
28
- weight_sp: float = 0.1,
29
- band_width: float = 0.5,
30
- loss_type: str = 'cosine',
31
- use_vgg: bool = False,
32
- vgg_layer: str = 'relu3_4'):
33
-
34
- super(ContextualBilateralLoss, self).__init__()
35
-
36
- assert band_width > 0, 'band_width parameter must be positive.'
37
- assert loss_type in LOSS_TYPES,\
38
- f'select a loss type from {LOSS_TYPES}.'
39
-
40
- self.band_width = band_width
41
-
42
- if use_vgg:
43
- self.vgg_model = VGG19()
44
- self.vgg_layer = vgg_layer
45
- self.register_buffer(
46
- name='vgg_mean',
47
- tensor=torch.tensor(
48
- [[[0.485]], [[0.456]], [[0.406]]], requires_grad=False)
49
- )
50
- self.register_buffer(
51
- name='vgg_std',
52
- tensor=torch.tensor(
53
- [[[0.229]], [[0.224]], [[0.225]]], requires_grad=False)
54
- )
55
-
56
- def forward(self, x, y):
57
- if hasattr(self, 'vgg_model'):
58
- assert x.shape[1] == 3 and y.shape[1] == 3,\
59
- 'VGG model takes 3 chennel images.'
60
-
61
- # normalization
62
- x = x.sub(self.vgg_mean.detach()).div(self.vgg_std.detach())
63
- y = y.sub(self.vgg_mean.detach()).div(self.vgg_std.detach())
64
-
65
- # picking up vgg feature maps
66
- x = getattr(self.vgg_model(x), self.vgg_layer)
67
- y = getattr(self.vgg_model(y), self.vgg_layer)
68
-
69
- return F.contextual_bilateral_loss(x, y, self.band_width)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/losses/contextual_loss/modules/vgg.py DELETED
@@ -1,48 +0,0 @@
1
- from collections import namedtuple
2
-
3
- import torch.nn as nn
4
- import torchvision.models.vgg as vgg
5
-
6
-
7
- class VGG19(nn.Module):
8
- def __init__(self, requires_grad=False):
9
- super(VGG19, self).__init__()
10
- vgg_pretrained_features = vgg.vgg19(pretrained=True).features
11
- self.slice1 = nn.Sequential()
12
- self.slice2 = nn.Sequential()
13
- self.slice3 = nn.Sequential()
14
- self.slice4 = nn.Sequential()
15
- self.slice5 = nn.Sequential()
16
- for x in range(4):
17
- self.slice1.add_module(str(x), vgg_pretrained_features[x])
18
- for x in range(4, 9):
19
- self.slice2.add_module(str(x), vgg_pretrained_features[x])
20
- for x in range(9, 18):
21
- self.slice3.add_module(str(x), vgg_pretrained_features[x])
22
- for x in range(18, 27):
23
- self.slice4.add_module(str(x), vgg_pretrained_features[x])
24
- for x in range(27, 36):
25
- self.slice5.add_module(str(x), vgg_pretrained_features[x])
26
- if not requires_grad:
27
- for param in self.parameters():
28
- param.requires_grad = False
29
-
30
- def forward(self, X):
31
- h = self.slice1(X)
32
- h_relu1_2 = h
33
- h = self.slice2(h)
34
- h_relu2_2 = h
35
- h = self.slice3(h)
36
- h_relu3_4 = h
37
- h = self.slice4(h)
38
- h_relu4_4 = h
39
- h = self.slice5(h)
40
- h_relu5_4 = h
41
-
42
- vgg_outputs = namedtuple(
43
- "VggOutputs", ['relu1_2', 'relu2_2',
44
- 'relu3_4', 'relu4_4', 'relu5_4'])
45
- out = vgg_outputs(h_relu1_2, h_relu2_2,
46
- h_relu3_4, h_relu4_4, h_relu5_4)
47
-
48
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/losses/joint_loss.py DELETED
@@ -1,167 +0,0 @@
1
- from argparse import (
2
- ArgumentParser,
3
- Namespace,
4
- )
5
- from typing import (
6
- Dict,
7
- Iterable,
8
- Optional,
9
- Tuple,
10
- )
11
-
12
- import numpy as np
13
- import torch
14
- from torch import nn
15
-
16
- from utils.misc import (
17
- optional_string,
18
- iterable_to_str,
19
- )
20
-
21
- from .contextual_loss import ContextualLoss
22
- from .color_transfer_loss import ColorTransferLoss
23
- from .regularize_noise import NoiseRegularizer
24
- from .reconstruction import (
25
- EyeLoss,
26
- FaceLoss,
27
- create_perceptual_loss,
28
- ReconstructionArguments,
29
- )
30
-
31
- class LossArguments:
32
- @staticmethod
33
- def add_arguments(parser: ArgumentParser):
34
- ReconstructionArguments.add_arguments(parser)
35
-
36
- parser.add_argument("--color_transfer", type=float, default=1e10, help="color transfer loss weight")
37
- parser.add_argument("--eye", type=float, default=0.1, help="eye loss weight")
38
- parser.add_argument('--noise_regularize', type=float, default=5e4)
39
- # contextual loss
40
- parser.add_argument("--contextual", type=float, default=0.1, help="contextual loss weight")
41
- parser.add_argument("--cx_layers", nargs='*', help="contextual loss layers",
42
- choices=['relu1_2', 'relu2_2', 'relu3_4', 'relu4_4', 'relu5_4'],
43
- default=['relu3_4', 'relu2_2', 'relu1_2'])
44
-
45
- @staticmethod
46
- def to_string(args: Namespace) -> str:
47
- return (
48
- ReconstructionArguments.to_string(args)
49
- + optional_string(args.eye > 0, f"-eye{args.eye}")
50
- + optional_string(args.color_transfer, f"-color{args.color_transfer:.1e}")
51
- + optional_string(
52
- args.contextual,
53
- f"-cx{args.contextual}({iterable_to_str(args.cx_layers)})"
54
- )
55
- #+ optional_string(args.mse, f"-mse{args.mse}")
56
- + optional_string(args.noise_regularize, f"-NR{args.noise_regularize:.1e}")
57
- )
58
-
59
-
60
- class BakedMultiContextualLoss(nn.Module):
61
- """Random sample different image patches for different vgg layers."""
62
- def __init__(self, sibling: torch.Tensor, args: Namespace, size: int = 256):
63
- super().__init__()
64
-
65
- self.cxs = nn.ModuleList([ContextualLoss(use_vgg=True, vgg_layers=[layer])
66
- for layer in args.cx_layers])
67
- self.size = size
68
- self.sibling = sibling.detach()
69
-
70
- def forward(self, img: torch.Tensor):
71
- cx_loss = 0
72
- for cx in self.cxs:
73
- h, w = np.random.randint(0, high=img.shape[-1] - self.size, size=2)
74
- cx_loss = cx(self.sibling[..., h:h+self.size, w:w+self.size], img[..., h:h+self.size, w:w+self.size]) + cx_loss
75
- return cx_loss
76
-
77
-
78
- class BakedContextualLoss(ContextualLoss):
79
- def __init__(self, sibling: torch.Tensor, args: Namespace, size: int = 256):
80
- super().__init__(use_vgg=True, vgg_layers=args.cx_layers)
81
- self.size = size
82
- self.sibling = sibling.detach()
83
-
84
- def forward(self, img: torch.Tensor):
85
- h, w = np.random.randint(0, high=img.shape[-1] - self.size, size=2)
86
- return super().forward(self.sibling[..., h:h+self.size, w:w+self.size], img[..., h:h+self.size, w:w+self.size])
87
-
88
-
89
- class JointLoss(nn.Module):
90
- def __init__(
91
- self,
92
- args: Namespace,
93
- target: torch.Tensor,
94
- sibling: Optional[torch.Tensor],
95
- sibling_rgbs: Optional[Iterable[torch.Tensor]] = None,
96
- ):
97
- super().__init__()
98
-
99
- self.weights = {
100
- "face": 1., "eye": args.eye,
101
- "contextual": args.contextual, "color_transfer": args.color_transfer,
102
- "noise": args.noise_regularize,
103
- }
104
-
105
- reconstruction = {}
106
- if args.vgg > 0 or args.vggface > 0:
107
- percept = create_perceptual_loss(args)
108
- reconstruction.update(
109
- {"face": FaceLoss(target, input_size=args.generator_size, size=args.recon_size, percept=percept)}
110
- )
111
- if args.eye > 0:
112
- reconstruction.update(
113
- {"eye": EyeLoss(target, input_size=args.generator_size, percept=percept)}
114
- )
115
- self.reconstruction = nn.ModuleDict(reconstruction)
116
-
117
- exemplar = {}
118
- if args.contextual > 0 and len(args.cx_layers) > 0:
119
- assert sibling is not None
120
- exemplar.update(
121
- {"contextual": BakedContextualLoss(sibling, args)}
122
- )
123
- if args.color_transfer > 0:
124
- assert sibling_rgbs is not None
125
- self.sibling_rgbs = sibling_rgbs
126
- exemplar.update(
127
- {"color_transfer": ColorTransferLoss(init_rgbs=sibling_rgbs)}
128
- )
129
- self.exemplar = nn.ModuleDict(exemplar)
130
-
131
- if args.noise_regularize > 0:
132
- self.noise_criterion = NoiseRegularizer()
133
-
134
- def forward(
135
- self, img, degrade=None, noises=None, rgbs=None, rgb_level: Optional[int] = None
136
- ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
137
- """
138
- Args:
139
- rgbs: results from the ToRGB layers
140
- """
141
- # TODO: add current optimization resolution for noises
142
-
143
- losses = {}
144
-
145
- # reconstruction losses
146
- for name, criterion in self.reconstruction.items():
147
- losses[name] = criterion(img, degrade=degrade)
148
-
149
- # exemplar losses
150
- if 'contextual' in self.exemplar:
151
- losses["contextual"] = self.exemplar["contextual"](img)
152
- if "color_transfer" in self.exemplar:
153
- assert rgbs is not None
154
- losses["color_transfer"] = self.exemplar["color_transfer"](rgbs, level=rgb_level)
155
-
156
- # noise regularizer
157
- if self.weights["noise"] > 0:
158
- losses["noise"] = self.noise_criterion(noises)
159
-
160
- total_loss = 0
161
- for name, loss in losses.items():
162
- total_loss = total_loss + self.weights[name] * loss
163
- return total_loss, losses
164
-
165
- def update_sibling(self, sibling: torch.Tensor):
166
- assert "contextual" in self.exemplar
167
- self.exemplar["contextual"].sibling = sibling.detach()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/losses/perceptual_loss.py DELETED
@@ -1,111 +0,0 @@
1
- """
2
- Code borrowed from https://gist.github.com/alper111/8233cdb0414b4cb5853f2f730ab95a49#file-vgg_perceptual_loss-py-L5
3
- """
4
- import torch
5
- import torchvision
6
- from models.vggface import VGGFaceFeats
7
-
8
-
9
- def cos_loss(fi, ft):
10
- return 1 - torch.nn.functional.cosine_similarity(fi, ft).mean()
11
-
12
-
13
- class VGGPerceptualLoss(torch.nn.Module):
14
- def __init__(self, resize=False):
15
- super(VGGPerceptualLoss, self).__init__()
16
- blocks = []
17
- blocks.append(torchvision.models.vgg16(pretrained=True).features[:4].eval())
18
- blocks.append(torchvision.models.vgg16(pretrained=True).features[4:9].eval())
19
- blocks.append(torchvision.models.vgg16(pretrained=True).features[9:16].eval())
20
- blocks.append(torchvision.models.vgg16(pretrained=True).features[16:23].eval())
21
- for bl in blocks:
22
- for p in bl:
23
- p.requires_grad = False
24
- self.blocks = torch.nn.ModuleList(blocks)
25
- self.transform = torch.nn.functional.interpolate
26
- self.mean = torch.nn.Parameter(torch.tensor([0.485, 0.456, 0.406]).view(1,3,1,1))
27
- self.std = torch.nn.Parameter(torch.tensor([0.229, 0.224, 0.225]).view(1,3,1,1))
28
- self.resize = resize
29
-
30
- def forward(self, input, target, max_layer=4, cos_dist: bool = False):
31
- target = (target + 1) * 0.5
32
- input = (input + 1) * 0.5
33
-
34
- if input.shape[1] != 3:
35
- input = input.repeat(1, 3, 1, 1)
36
- target = target.repeat(1, 3, 1, 1)
37
- input = (input-self.mean) / self.std
38
- target = (target-self.mean) / self.std
39
- if self.resize:
40
- input = self.transform(input, mode='bilinear', size=(224, 224), align_corners=False)
41
- target = self.transform(target, mode='bilinear', size=(224, 224), align_corners=False)
42
- x = input
43
- y = target
44
- loss = 0.0
45
- loss_func = cos_loss if cos_dist else torch.nn.functional.l1_loss
46
- for bi, block in enumerate(self.blocks[:max_layer]):
47
- x = block(x)
48
- y = block(y)
49
- loss += loss_func(x, y.detach())
50
- return loss
51
-
52
-
53
- class VGGFacePerceptualLoss(torch.nn.Module):
54
- def __init__(self, weight_path: str = "checkpoint/vgg_face_dag.pt", resize: bool = False):
55
- super().__init__()
56
- self.vgg = VGGFaceFeats()
57
- self.vgg.load_state_dict(torch.load(weight_path))
58
-
59
- mean = torch.tensor(self.vgg.meta["mean"]).view(1, 3, 1, 1) / 255.0
60
- self.register_buffer("mean", mean)
61
-
62
- self.transform = torch.nn.functional.interpolate
63
- self.resize = resize
64
-
65
- def forward(self, input, target, max_layer: int = 4, cos_dist: bool = False):
66
- target = (target + 1) * 0.5
67
- input = (input + 1) * 0.5
68
-
69
- # preprocessing
70
- if input.shape[1] != 3:
71
- input = input.repeat(1, 3, 1, 1)
72
- target = target.repeat(1, 3, 1, 1)
73
- input = input - self.mean
74
- target = target - self.mean
75
- if self.resize:
76
- input = self.transform(input, mode='bilinear', size=(224, 224), align_corners=False)
77
- target = self.transform(target, mode='bilinear', size=(224, 224), align_corners=False)
78
-
79
- input_feats = self.vgg(input)
80
- target_feats = self.vgg(target)
81
-
82
- loss_func = cos_loss if cos_dist else torch.nn.functional.l1_loss
83
- # calc perceptual loss
84
- loss = 0.0
85
- for fi, ft in zip(input_feats[:max_layer], target_feats[:max_layer]):
86
- loss = loss + loss_func(fi, ft.detach())
87
- return loss
88
-
89
-
90
- class PerceptualLoss(torch.nn.Module):
91
- def __init__(
92
- self, lambda_vggface: float = 0.025 / 0.15, lambda_vgg: float = 1, eps: float = 1e-8, cos_dist: bool = False
93
- ):
94
- super().__init__()
95
- self.register_buffer("lambda_vggface", torch.tensor(lambda_vggface))
96
- self.register_buffer("lambda_vgg", torch.tensor(lambda_vgg))
97
- self.cos_dist = cos_dist
98
-
99
- if lambda_vgg > eps:
100
- self.vgg = VGGPerceptualLoss()
101
- if lambda_vggface > eps:
102
- self.vggface = VGGFacePerceptualLoss()
103
-
104
- def forward(self, input, target, eps=1e-8, use_vggface: bool = True, use_vgg=True, max_vgg_layer=4):
105
- loss = 0.0
106
- if self.lambda_vgg > eps and use_vgg:
107
- loss = loss + self.lambda_vgg * self.vgg(input, target, max_layer=max_vgg_layer)
108
- if self.lambda_vggface > eps and use_vggface:
109
- loss = loss + self.lambda_vggface * self.vggface(input, target, cos_dist=self.cos_dist)
110
- return loss
111
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/losses/reconstruction.py DELETED
@@ -1,119 +0,0 @@
1
- from argparse import (
2
- ArgumentParser,
3
- Namespace,
4
- )
5
- from typing import Optional
6
-
7
- import numpy as np
8
- import torch
9
- from torch import nn
10
-
11
- from losses.perceptual_loss import PerceptualLoss
12
- from models.degrade import Downsample
13
- from utils.misc import optional_string
14
-
15
-
16
- class ReconstructionArguments:
17
- @staticmethod
18
- def add_arguments(parser: ArgumentParser):
19
- parser.add_argument("--vggface", type=float, default=0.3, help="vggface")
20
- parser.add_argument("--vgg", type=float, default=1, help="vgg")
21
- parser.add_argument('--recon_size', type=int, default=256, help="size for face reconstruction loss")
22
-
23
- @staticmethod
24
- def to_string(args: Namespace) -> str:
25
- return (
26
- f"s{args.recon_size}"
27
- + optional_string(args.vgg > 0, f"-vgg{args.vgg}")
28
- + optional_string(args.vggface > 0, f"-vggface{args.vggface}")
29
- )
30
-
31
-
32
- def create_perceptual_loss(args: Namespace):
33
- return PerceptualLoss(lambda_vgg=args.vgg, lambda_vggface=args.vggface, cos_dist=False)
34
-
35
-
36
- class EyeLoss(nn.Module):
37
- def __init__(
38
- self,
39
- target: torch.Tensor,
40
- input_size: int = 1024,
41
- input_channels: int = 3,
42
- percept: Optional[nn.Module] = None,
43
- args: Optional[Namespace] = None
44
- ):
45
- """
46
- target: target image
47
- """
48
- assert not (percept is None and args is None)
49
-
50
- super().__init__()
51
-
52
- self.target = target
53
-
54
- target_size = target.shape[-1]
55
- self.downsample = Downsample(input_size, target_size, input_channels) \
56
- if target_size != input_size else (lambda x: x)
57
-
58
- self.percept = percept if percept is not None else create_perceptual_loss(args)
59
-
60
- eye_size = np.array((224, 224))
61
- btlrs = []
62
- for sgn in [1, -1]:
63
- center = np.array((480, 384 * sgn)) # (y, x)
64
- b, t = center[0] - eye_size[0] // 2, center[0] + eye_size[0] // 2
65
- l, r = center[1] - eye_size[1] // 2, center[1] + eye_size[1] // 2
66
- btlrs.append((np.array((b, t, l, r)) / 1024 * target_size).astype(int))
67
- self.btlrs = np.stack(btlrs, axis=0)
68
-
69
- def forward(self, img: torch.Tensor, degrade: nn.Module = None):
70
- """
71
- img: it should be the degraded version of the generated image
72
- """
73
- if degrade is not None:
74
- img = degrade(img, downsample=self.downsample)
75
-
76
- loss = 0
77
- for (b, t, l, r) in self.btlrs:
78
- loss = loss + self.percept(
79
- img[:, :, b:t, l:r], self.target[:, :, b:t, l:r],
80
- use_vggface=False, max_vgg_layer=4,
81
- # use_vgg=False,
82
- )
83
- return loss
84
-
85
-
86
- class FaceLoss(nn.Module):
87
- def __init__(
88
- self,
89
- target: torch.Tensor,
90
- input_size: int = 1024,
91
- input_channels: int = 3,
92
- size: int = 256,
93
- percept: Optional[nn.Module] = None,
94
- args: Optional[Namespace] = None
95
- ):
96
- """
97
- target: target image
98
- """
99
- assert not (percept is None and args is None)
100
-
101
- super().__init__()
102
-
103
- target_size = target.shape[-1]
104
- self.target = target if target_size == size \
105
- else Downsample(target_size, size, target.shape[1]).to(target.device)(target)
106
-
107
- self.downsample = Downsample(input_size, size, input_channels) \
108
- if size != input_size else (lambda x: x)
109
-
110
- self.percept = percept if percept is not None else create_perceptual_loss(args)
111
-
112
- def forward(self, img: torch.Tensor, degrade: nn.Module = None):
113
- """
114
- img: it should be the degraded version of the generated image
115
- """
116
- if degrade is not None:
117
- img = degrade(img, downsample=self.downsample)
118
- loss = self.percept(img, self.target)
119
- return loss
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/losses/regularize_noise.py DELETED
@@ -1,37 +0,0 @@
1
- from typing import Iterable
2
-
3
- import torch
4
- from torch import nn
5
-
6
-
7
- class NoiseRegularizer(nn.Module):
8
- def forward(self, noises: Iterable[torch.Tensor]):
9
- loss = 0
10
-
11
- for noise in noises:
12
- size = noise.shape[2]
13
-
14
- while True:
15
- loss = (
16
- loss
17
- + (noise * torch.roll(noise, shifts=1, dims=3)).mean().pow(2)
18
- + (noise * torch.roll(noise, shifts=1, dims=2)).mean().pow(2)
19
- )
20
-
21
- if size <= 8:
22
- break
23
-
24
- noise = noise.reshape([1, 1, size // 2, 2, size // 2, 2])
25
- noise = noise.mean([3, 5])
26
- size //= 2
27
-
28
- return loss
29
-
30
- @staticmethod
31
- def normalize(noises: Iterable[torch.Tensor]):
32
- for noise in noises:
33
- mean = noise.mean()
34
- std = noise.std()
35
-
36
- noise.data.add_(-mean).div_(std)
37
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/model.py DELETED
@@ -1,697 +0,0 @@
1
- import math
2
- import random
3
- import functools
4
- import operator
5
- import numpy as np
6
-
7
- import torch
8
- from torch import nn
9
- from torch.nn import functional as F
10
- from torch.autograd import Function
11
- from torch_utils.ops.bias_act import bias_act,bias_act_relu
12
- from torch_utils.ops.upfirdn2d import upfirdn2d
13
-
14
-
15
- class PixelNorm(nn.Module):
16
- def __init__(self):
17
- super().__init__()
18
-
19
- def forward(self, input):
20
- return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
21
-
22
-
23
- def make_kernel(k):
24
- k = torch.tensor(k, dtype=torch.float32)
25
-
26
- if k.ndim == 1:
27
- k = k[None, :] * k[:, None]
28
-
29
- k /= k.sum()
30
-
31
- return k
32
-
33
-
34
- class Upsample(nn.Module):
35
- def __init__(self, kernel, factor=2):
36
- super().__init__()
37
-
38
- self.factor = factor
39
- kernel = make_kernel(kernel) * (factor ** 2)
40
- self.register_buffer('kernel', kernel)
41
-
42
- p = kernel.shape[0] - factor
43
-
44
- pad0 = (p + 1) // 2 + factor - 1
45
- pad1 = p // 2
46
-
47
- self.pad = (pad0, pad1)
48
-
49
- def forward(self, input):
50
- out = upfirdn2d(input, self.kernel, up=self.factor, down=1, padding=[self.pad[0], self.pad[1], self.pad[0], self.pad[1]])
51
-
52
- return out
53
-
54
-
55
- class Downsample(nn.Module):
56
- def __init__(self, kernel, factor=2):
57
- super().__init__()
58
-
59
- self.factor = factor
60
- kernel = make_kernel(kernel)
61
- self.register_buffer('kernel', kernel)
62
-
63
- p = kernel.shape[0] - factor
64
-
65
- pad0 = (p + 1) // 2
66
- pad1 = p // 2
67
-
68
- self.pad = (pad0, pad1)
69
-
70
- def forward(self, input):
71
- out = upfirdn2d(input, self.kernel, up=1, down=self.factor, padding=[self.pad[0], self.pad[1], self.pad[0], self.pad[1]])
72
-
73
- return out
74
-
75
-
76
- class Blur(nn.Module):
77
- def __init__(self, kernel, pad, upsample_factor=1):
78
- super().__init__()
79
-
80
- kernel = make_kernel(kernel)
81
-
82
- if upsample_factor > 1:
83
- kernel = kernel * (upsample_factor ** 2)
84
-
85
- self.register_buffer('kernel', kernel)
86
-
87
- self.pad = pad
88
-
89
- def forward(self, input):
90
- out = upfirdn2d(input, self.kernel, padding=[self.pad[0], self.pad[1], self.pad[0], self.pad[1]])
91
-
92
- return out
93
-
94
-
95
- class EqualConv2d(nn.Module):
96
- def __init__(
97
- self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
98
- ):
99
- super().__init__()
100
-
101
- self.weight = nn.Parameter(
102
- torch.randn(out_channel, in_channel, kernel_size, kernel_size)
103
- )
104
- self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
105
-
106
- self.stride = stride
107
- self.padding = padding
108
-
109
- if bias:
110
- self.bias = nn.Parameter(torch.zeros(out_channel))
111
-
112
- else:
113
- self.bias = None
114
-
115
- def forward(self, input):
116
- out = F.conv2d(
117
- input,
118
- self.weight * self.scale,
119
- bias=self.bias,
120
- stride=self.stride,
121
- padding=self.padding,
122
- )
123
-
124
- return out
125
-
126
- def __repr__(self):
127
- return (
128
- f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
129
- f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
130
- )
131
-
132
-
133
- class EqualLinear(nn.Module):
134
- def __init__(
135
- self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
136
- ):
137
- super().__init__()
138
-
139
- self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
140
-
141
- if bias:
142
- self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
143
-
144
- else:
145
- self.bias = None
146
-
147
- self.activation = activation
148
-
149
- self.scale = (1 / math.sqrt(in_dim)) * lr_mul
150
- self.lr_mul = lr_mul
151
-
152
- def forward(self, input):
153
- if self.activation:
154
- out = F.linear(input, self.weight * self.scale)
155
- out = bias_act(out)
156
-
157
- else:
158
- out = F.linear(
159
- input, self.weight * self.scale, bias=self.bias * self.lr_mul
160
- )
161
-
162
- return out
163
-
164
- def __repr__(self):
165
- return (
166
- f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
167
- )
168
-
169
-
170
- class ScaledLeakyReLU(nn.Module):
171
- def __init__(self, negative_slope=0.2):
172
- super().__init__()
173
-
174
- self.negative_slope = negative_slope
175
-
176
- def forward(self, input):
177
- out = F.leaky_relu(input, negative_slope=self.negative_slope)
178
-
179
- return out * math.sqrt(2)
180
-
181
-
182
- class ModulatedConv2d(nn.Module):
183
- def __init__(
184
- self,
185
- in_channel,
186
- out_channel,
187
- kernel_size,
188
- style_dim,
189
- demodulate=True,
190
- upsample=False,
191
- downsample=False,
192
- blur_kernel=[1, 3, 3, 1],
193
- ):
194
- super().__init__()
195
-
196
- self.eps = 1e-8
197
- self.kernel_size = kernel_size
198
- self.in_channel = in_channel
199
- self.out_channel = out_channel
200
- self.upsample = upsample
201
- self.downsample = downsample
202
-
203
- if upsample:
204
- factor = 2
205
- p = (len(blur_kernel) - factor) - (kernel_size - 1)
206
- pad0 = (p + 1) // 2 + factor - 1
207
- pad1 = p // 2 + 1
208
-
209
- self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor)
210
-
211
- if downsample:
212
- factor = 2
213
- p = (len(blur_kernel) - factor) + (kernel_size - 1)
214
- pad0 = (p + 1) // 2
215
- pad1 = p // 2
216
-
217
- self.blur = Blur(blur_kernel, pad=(pad0, pad1))
218
-
219
- fan_in = in_channel * kernel_size ** 2
220
- self.scale = 1 / math.sqrt(fan_in)
221
- self.padding = kernel_size // 2
222
-
223
- self.weight = nn.Parameter(
224
- torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
225
- )
226
-
227
- self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
228
-
229
- self.demodulate = demodulate
230
-
231
- def __repr__(self):
232
- return (
233
- f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, '
234
- f'upsample={self.upsample}, downsample={self.downsample})'
235
- )
236
-
237
- def forward(self, input, style):
238
- batch, in_channel, height, width = input.shape
239
-
240
- style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
241
- weight = self.scale * self.weight * style
242
-
243
- if self.demodulate:
244
- demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
245
- weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
246
-
247
- weight = weight.view(
248
- batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
249
- )
250
-
251
- if self.upsample:
252
- input = input.view(1, batch * in_channel, height, width)
253
- weight = weight.view(
254
- batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size
255
- )
256
- weight = weight.transpose(1, 2).reshape(
257
- batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size
258
- )
259
- out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch)
260
- _, _, height, width = out.shape
261
- out = out.view(batch, self.out_channel, height, width)
262
- out = self.blur(out)
263
-
264
- elif self.downsample:
265
- input = self.blur(input)
266
- _, _, height, width = input.shape
267
- input = input.view(1, batch * in_channel, height, width)
268
- out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
269
- _, _, height, width = out.shape
270
- out = out.view(batch, self.out_channel, height, width)
271
-
272
- else:
273
- input = input.view(1, batch * in_channel, height, width)
274
- out = F.conv2d(input, weight, padding=self.padding, groups=batch)
275
- _, _, height, width = out.shape
276
- out = out.view(batch, self.out_channel, height, width)
277
-
278
- return out
279
-
280
-
281
- class NoiseInjection(nn.Module):
282
- def __init__(self):
283
- super().__init__()
284
-
285
- self.weight = nn.Parameter(torch.zeros(1))
286
-
287
- def forward(self, image, noise=None):
288
- if noise is None:
289
- batch, _, height, width = image.shape
290
- noise = image.new_empty(batch, 1, height, width).normal_()
291
-
292
- return image + self.weight * noise
293
-
294
-
295
- class ConstantInput(nn.Module):
296
- def __init__(self, channel, size=4):
297
- super().__init__()
298
-
299
- self.input = nn.Parameter(torch.randn(1, channel, size, size))
300
-
301
- def forward(self, input):
302
- batch = input.shape[0]
303
- out = self.input.repeat(batch, 1, 1, 1)
304
-
305
- return out
306
-
307
-
308
- class StyledConv(nn.Module):
309
- def __init__(
310
- self,
311
- in_channel,
312
- out_channel,
313
- kernel_size,
314
- style_dim,
315
- upsample=False,
316
- blur_kernel=[1, 3, 3, 1],
317
- demodulate=True,
318
- ):
319
- super().__init__()
320
-
321
- self.conv = ModulatedConv2d(
322
- in_channel,
323
- out_channel,
324
- kernel_size,
325
- style_dim,
326
- upsample=upsample,
327
- blur_kernel=blur_kernel,
328
- demodulate=demodulate,
329
- )
330
-
331
- self.noise = NoiseInjection()
332
- # self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
333
- # self.activate = ScaledLeakyReLU(0.2)
334
- self.activate =bias_act_relu(out_channel)
335
-
336
- def forward(self, input, style, noise=None):
337
- out = self.conv(input, style)
338
- out = self.noise(out, noise=noise)
339
- # out = out + self.bias
340
- out = self.activate(out)
341
-
342
- return out
343
-
344
-
345
- class ToRGB(nn.Module):
346
- def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
347
- super().__init__()
348
-
349
- if upsample:
350
- self.upsample = Upsample(blur_kernel)
351
-
352
- self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False)
353
- self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
354
-
355
- def forward(self, input, style, skip=None):
356
- out = self.conv(input, style)
357
- style_modulated = out
358
- out = out + self.bias
359
-
360
- if skip is not None:
361
- skip = self.upsample(skip)
362
-
363
- out = out + skip
364
-
365
- return out, style_modulated
366
-
367
-
368
- class Generator(nn.Module):
369
- def __init__(
370
- self,
371
- size,
372
- style_dim,
373
- n_mlp,
374
- channel_multiplier=2,
375
- blur_kernel=[1, 3, 3, 1],
376
- lr_mlp=0.01,
377
- ):
378
- super().__init__()
379
-
380
- self.size = size
381
-
382
- self.style_dim = style_dim
383
-
384
- layers = [PixelNorm()]
385
-
386
- for i in range(n_mlp):
387
- layers.append(
388
- EqualLinear(
389
- style_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu'
390
- )
391
- )
392
-
393
- self.style = nn.Sequential(*layers)
394
-
395
- self.channels = {
396
- 4: 512,
397
- 8: 512,
398
- 16: 512,
399
- 32: 512,
400
- 64: 256 * channel_multiplier,
401
- 128: 128 * channel_multiplier,
402
- 256: 64 * channel_multiplier,
403
- 512: 32 * channel_multiplier,
404
- 1024: 16 * channel_multiplier,
405
- }
406
-
407
- self.input = ConstantInput(self.channels[4])
408
- self.conv1 = StyledConv(
409
- self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel
410
- )
411
- self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False)
412
-
413
- self.log_size = int(math.log(size, 2))
414
- self.num_layers = (self.log_size - 2) * 2 + 1
415
-
416
- self.convs = nn.ModuleList()
417
- self.upsamples = nn.ModuleList()
418
- self.to_rgbs = nn.ModuleList()
419
- self.noises = nn.Module()
420
-
421
- in_channel = self.channels[4]
422
-
423
- for layer_idx in range(self.num_layers):
424
- res = (layer_idx + 5) // 2
425
- shape = [1, 1, 2 ** res, 2 ** res]
426
- self.noises.register_buffer(f'noise_{layer_idx}', torch.randn(*shape))
427
-
428
- for i in range(3, self.log_size + 1):
429
- out_channel = self.channels[2 ** i]
430
-
431
- self.convs.append(
432
- StyledConv(
433
- in_channel,
434
- out_channel,
435
- 3,
436
- style_dim,
437
- upsample=True,
438
- blur_kernel=blur_kernel,
439
- )
440
- )
441
-
442
- self.convs.append(
443
- StyledConv(
444
- out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel
445
- )
446
- )
447
-
448
- self.to_rgbs.append(ToRGB(out_channel, style_dim))
449
-
450
- in_channel = out_channel
451
-
452
- self.n_latent = self.log_size * 2 - 2
453
-
454
- @property
455
- def device(self):
456
- # TODO if multi-gpu is expected, could use the following more expensive version
457
- #device, = list(set(p.device for p in self.parameters()))
458
- return next(self.parameters()).device
459
-
460
- @staticmethod
461
- def get_latent_size(size):
462
- log_size = int(math.log(size, 2))
463
- return log_size * 2 - 2
464
-
465
- @staticmethod
466
- def make_noise_by_size(size: int, device: torch.device):
467
- log_size = int(math.log(size, 2))
468
- noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)]
469
-
470
- for i in range(3, log_size + 1):
471
- for _ in range(2):
472
- noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device))
473
-
474
- return noises
475
-
476
-
477
- def make_noise(self):
478
- return self.make_noise_by_size(self.size, self.input.input.device)
479
-
480
- def mean_latent(self, n_latent):
481
- latent_in = torch.randn(
482
- n_latent, self.style_dim, device=self.input.input.device
483
- )
484
- latent = self.style(latent_in).mean(0, keepdim=True)
485
-
486
- return latent
487
-
488
- def get_latent(self, input):
489
- return self.style(input)
490
-
491
- def forward(
492
- self,
493
- styles,
494
- return_latents=False,
495
- inject_index=None,
496
- truncation=1,
497
- truncation_latent=None,
498
- input_is_latent=False,
499
- noise=None,
500
- randomize_noise=True,
501
- ):
502
- if not input_is_latent:
503
- styles = [self.style(s) for s in styles]
504
-
505
- if noise is None:
506
- if randomize_noise:
507
- noise = [None] * self.num_layers
508
- else:
509
- noise = [
510
- getattr(self.noises, f'noise_{i}') for i in range(self.num_layers)
511
- ]
512
-
513
- if truncation < 1:
514
- style_t = []
515
-
516
- for style in styles:
517
- style_t.append(
518
- truncation_latent + truncation * (style - truncation_latent)
519
- )
520
-
521
- styles = style_t
522
-
523
- if len(styles) < 2:
524
- inject_index = self.n_latent
525
-
526
- if styles[0].ndim < 3:
527
- latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
528
-
529
- else:
530
- latent = styles[0]
531
-
532
- else:
533
- if inject_index is None:
534
- inject_index = random.randint(1, self.n_latent - 1)
535
-
536
- latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
537
- latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)
538
-
539
- latent = torch.cat([latent, latent2], 1)
540
-
541
- out = self.input(latent)
542
- out = self.conv1(out, latent[:, 0], noise=noise[0])
543
-
544
- skip, rgb_mod = self.to_rgb1(out, latent[:, 1])
545
-
546
-
547
- rgbs = [rgb_mod] # all but the last skip
548
- i = 1
549
- for conv1, conv2, noise1, noise2, to_rgb in zip(
550
- self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
551
- ):
552
- out = conv1(out, latent[:, i], noise=noise1)
553
- out = conv2(out, latent[:, i + 1], noise=noise2)
554
- skip, rgb_mod = to_rgb(out, latent[:, i + 2], skip)
555
- rgbs.append(rgb_mod)
556
-
557
- i += 2
558
-
559
- image = skip
560
-
561
- if return_latents:
562
- return image, latent, rgbs
563
-
564
- else:
565
- return image, None, rgbs
566
-
567
-
568
- class ConvLayer(nn.Sequential):
569
- def __init__(
570
- self,
571
- in_channel,
572
- out_channel,
573
- kernel_size,
574
- downsample=False,
575
- blur_kernel=[1, 3, 3, 1],
576
- bias=True,
577
- activate=True,
578
- ):
579
- layers = []
580
-
581
- if downsample:
582
- factor = 2
583
- p = (len(blur_kernel) - factor) + (kernel_size - 1)
584
- pad0 = (p + 1) // 2
585
- pad1 = p // 2
586
-
587
- layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
588
-
589
- stride = 2
590
- self.padding = 0
591
-
592
- else:
593
- stride = 1
594
- self.padding = kernel_size // 2
595
-
596
- layers.append(
597
- EqualConv2d(
598
- in_channel,
599
- out_channel,
600
- kernel_size,
601
- padding=self.padding,
602
- stride=stride,
603
- bias=bias and not activate,
604
- )
605
- )
606
-
607
- if activate:
608
- if bias:
609
- layers.append(bias_act_relu(out_channel))
610
-
611
- else:
612
- layers.append(ScaledLeakyReLU(0.2))
613
-
614
- super().__init__(*layers)
615
-
616
-
617
- class ResBlock(nn.Module):
618
- def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
619
- super().__init__()
620
-
621
- self.conv1 = ConvLayer(in_channel, in_channel, 3)
622
- self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
623
-
624
- self.skip = ConvLayer(
625
- in_channel, out_channel, 1, downsample=True, activate=False, bias=False
626
- )
627
-
628
- def forward(self, input):
629
- out = self.conv1(input)
630
- out = self.conv2(out)
631
-
632
- skip = self.skip(input)
633
- out = (out + skip) / math.sqrt(2)
634
-
635
- return out
636
-
637
-
638
- class Discriminator(nn.Module):
639
- def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
640
- super().__init__()
641
-
642
- channels = {
643
- 4: 512,
644
- 8: 512,
645
- 16: 512,
646
- 32: 512,
647
- 64: 256 * channel_multiplier,
648
- 128: 128 * channel_multiplier,
649
- 256: 64 * channel_multiplier,
650
- 512: 32 * channel_multiplier,
651
- 1024: 16 * channel_multiplier,
652
- }
653
-
654
- convs = [ConvLayer(3, channels[size], 1)]
655
-
656
- log_size = int(math.log(size, 2))
657
-
658
- in_channel = channels[size]
659
-
660
- for i in range(log_size, 2, -1):
661
- out_channel = channels[2 ** (i - 1)]
662
-
663
- convs.append(ResBlock(in_channel, out_channel, blur_kernel))
664
-
665
- in_channel = out_channel
666
-
667
- self.convs = nn.Sequential(*convs)
668
-
669
- self.stddev_group = 4
670
- self.stddev_feat = 1
671
-
672
- self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
673
- self.final_linear = nn.Sequential(
674
- EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu'),
675
- EqualLinear(channels[4], 1),
676
- )
677
-
678
- def forward(self, input):
679
- out = self.convs(input)
680
-
681
- batch, channel, height, width = out.shape
682
- group = min(batch, self.stddev_group)
683
- stddev = out.view(
684
- group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
685
- )
686
- stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
687
- stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
688
- stddev = stddev.repeat(group, 1, height, width)
689
- out = torch.cat([out, stddev], 1)
690
-
691
- out = self.final_conv(out)
692
-
693
- out = out.view(batch, -1)
694
- out = self.final_linear(out)
695
-
696
- return out
697
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/models/__init__.py DELETED
File without changes
Time_TravelRephotography/models/degrade.py DELETED
@@ -1,122 +0,0 @@
1
- from argparse import (
2
- ArgumentParser,
3
- Namespace,
4
- )
5
-
6
- import torch
7
- from torch import nn
8
- from torch.nn import functional as F
9
-
10
- from utils.misc import optional_string
11
-
12
- from .gaussian_smoothing import GaussianSmoothing
13
-
14
-
15
- class DegradeArguments:
16
- @staticmethod
17
- def add_arguments(parser: ArgumentParser):
18
- parser.add_argument('--spectral_sensitivity', choices=["g", "b", "gb"], default="g",
19
- help="Type of spectral sensitivity. g: grayscale (panchromatic), b: blue-sensitive, gb: green+blue (orthochromatic)")
20
- parser.add_argument('--gaussian', type=float, default=0,
21
- help="estimated blur radius in pixels of the input photo if it is scaled to 1024x1024")
22
-
23
- @staticmethod
24
- def to_string(args: Namespace) -> str:
25
- return (
26
- f"{args.spectral_sensitivity}"
27
- + optional_string(args.gaussian > 0, f"-G{args.gaussian}")
28
- )
29
-
30
-
31
- class CameraResponse(nn.Module):
32
- def __init__(self):
33
- super().__init__()
34
-
35
- self.register_parameter("gamma", nn.Parameter(torch.ones(1)))
36
- self.register_parameter("offset", nn.Parameter(torch.zeros(1)))
37
- self.register_parameter("gain", nn.Parameter(torch.ones(1)))
38
-
39
- def forward(self, x: torch.Tensor) -> torch.Tensor:
40
- x = torch.clamp(x, max=1, min=-1+1e-2)
41
- x = (1 + x) * 0.5
42
- x = self.offset + self.gain * torch.pow(x, self.gamma)
43
- x = (x - 0.5) * 2
44
- # b = torch.clamp(b, max=1, min=-1)
45
- return x
46
-
47
-
48
- class SpectralResponse(nn.Module):
49
- # TODO: use enum instead for color mode
50
- def __init__(self, spectral_sensitivity: str = 'b'):
51
- assert spectral_sensitivity in ("g", "b", "gb"), f"spectral_sensitivity {spectral_sensitivity} is not implemented."
52
-
53
- super().__init__()
54
-
55
- self.spectral_sensitivity = spectral_sensitivity
56
-
57
- if self.spectral_sensitivity == "g":
58
- self.register_buffer("to_gray", torch.tensor([0.299, 0.587, 0.114]).reshape(1, -1, 1, 1))
59
-
60
- def forward(self, rgb: torch.Tensor) -> torch.Tensor:
61
- if self.spectral_sensitivity == "b":
62
- x = rgb[:, -1:]
63
- elif self.spectral_sensitivity == "gb":
64
- x = (rgb[:, 1:2] + rgb[:, -1:]) * 0.5
65
- else:
66
- assert self.spectral_sensitivity == "g"
67
- x = (rgb * self.to_gray).sum(dim=1, keepdim=True)
68
- return x
69
-
70
-
71
- class Downsample(nn.Module):
72
- """Antialiasing downsampling"""
73
- def __init__(self, input_size: int, output_size: int, channels: int):
74
- super().__init__()
75
- if input_size % output_size == 0:
76
- self.stride = input_size // output_size
77
- self.grid = None
78
- else:
79
- self.stride = 1
80
- step = input_size / output_size
81
- x = torch.arange(output_size) * step
82
- Y, X = torch.meshgrid(x, x)
83
- grid = torch.stack((X, Y), dim=-1)
84
- grid /= torch.Tensor((input_size - 1, input_size - 1)).view(1, 1, -1)
85
- grid = grid * 2 - 1
86
- self.register_buffer("grid", grid)
87
- sigma = 0.5 * input_size / output_size
88
- #print(f"{input_size} -> {output_size}: sigma={sigma}")
89
- self.blur = GaussianSmoothing(channels, int(2 * (sigma * 2) + 1 + 0.5), sigma)
90
-
91
- def forward(self, im: torch.Tensor):
92
- out = self.blur(im, stride=self.stride)
93
- if self.grid is not None:
94
- out = F.grid_sample(out, self.grid[None].expand(im.shape[0], -1, -1, -1))
95
- return out
96
-
97
-
98
-
99
- class Degrade(nn.Module):
100
- """
101
- Simulate the degradation of antique film
102
- """
103
- def __init__(self, args:Namespace):
104
- super().__init__()
105
- self.srf = SpectralResponse(args.spectral_sensitivity)
106
- self.crf = CameraResponse()
107
- self.gaussian = None
108
- if args.gaussian is not None and args.gaussian > 0:
109
- self.gaussian = GaussianSmoothing(3, 2 * int(args.gaussian * 2 + 0.5) + 1, args.gaussian)
110
-
111
- def forward(self, img: torch.Tensor, downsample: nn.Module = None):
112
- if self.gaussian is not None:
113
- img = self.gaussian(img)
114
- if downsample is not None:
115
- img = downsample(img)
116
- img = self.srf(img)
117
- img = self.crf(img)
118
- # Note that I changed it back to 3 channels
119
- return img.repeat((1, 3, 1, 1)) if img.shape[1] == 1 else img
120
-
121
-
122
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/models/encoder.py DELETED
@@ -1,66 +0,0 @@
1
- from argparse import Namespace, ArgumentParser
2
- from functools import partial
3
-
4
- from torch import nn
5
-
6
- from .resnet import ResNetBasicBlock, activation_func, norm_module, Conv2dAuto
7
-
8
-
9
- def add_arguments(parser: ArgumentParser) -> ArgumentParser:
10
- parser.add_argument("--latent_size", type=int, default=512, help="latent size")
11
- return parser
12
-
13
-
14
- def create_model(args) -> nn.Module:
15
- in_channels = 3 if "rgb" in args and args.rgb else 1
16
- return Encoder(in_channels, args.encoder_size, latent_size=args.latent_size)
17
-
18
-
19
- class Flatten(nn.Module):
20
- def forward(self, input_):
21
- return input_.view(input_.size(0), -1)
22
-
23
-
24
- class Encoder(nn.Module):
25
- def __init__(
26
- self, in_channels: int, size: int, latent_size: int = 512,
27
- activation: str = 'leaky_relu', norm: str = "instance"
28
- ):
29
- super().__init__()
30
-
31
- out_channels0 = 64
32
- norm_m = norm_module(norm)
33
- self.conv0 = nn.Sequential(
34
- Conv2dAuto(in_channels, out_channels0, kernel_size=5),
35
- norm_m(out_channels0),
36
- activation_func(activation),
37
- )
38
-
39
- pool_kernel = 2
40
- self.pool = nn.AvgPool2d(pool_kernel)
41
-
42
- num_channels = [128, 256, 512, 512]
43
- # FIXME: this is a hack
44
- if size >= 256:
45
- num_channels.append(512)
46
-
47
- residual = partial(ResNetBasicBlock, activation=activation, norm=norm, bias=True)
48
- residual_blocks = nn.ModuleList()
49
- for in_channel, out_channel in zip([out_channels0] + num_channels[:-1], num_channels):
50
- residual_blocks.append(residual(in_channel, out_channel))
51
- residual_blocks.append(nn.AvgPool2d(pool_kernel))
52
- self.residual_blocks = nn.Sequential(*residual_blocks)
53
-
54
- self.last = nn.Sequential(
55
- nn.ReLU(),
56
- nn.AvgPool2d(4), # TODO: not sure whehter this would cause problem
57
- Flatten(),
58
- nn.Linear(num_channels[-1], latent_size, bias=True)
59
- )
60
-
61
- def forward(self, input_):
62
- out = self.conv0(input_)
63
- out = self.pool(out)
64
- out = self.residual_blocks(out)
65
- out = self.last(out)
66
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/models/encoder4editing/.gitignore DELETED
@@ -1,133 +0,0 @@
1
- # Byte-compiled / optimized / DLL files
2
- __pycache__/
3
- *.py[cod]
4
- *$py.class
5
-
6
- # C extensions
7
- *.so
8
-
9
- # Distribution / packaging
10
- .Python
11
- build/
12
- develop-eggs/
13
- dist/
14
- downloads/
15
- eggs/
16
- .eggs/
17
- lib/
18
- lib64/
19
- parts/
20
- sdist/
21
- var/
22
- wheels/
23
- pip-wheel-metadata/
24
- share/python-wheels/
25
- *.egg-info/
26
- .installed.cfg
27
- *.egg
28
- MANIFEST
29
-
30
- # PyInstaller
31
- # Usually these files are written by a python script from a template
32
- # before PyInstaller builds the exe, so as to inject date/other infos into it.
33
- *.manifest
34
- *.spec
35
-
36
- # Installer logs
37
- pip-log.txt
38
- pip-delete-this-directory.txt
39
-
40
- # Unit test / coverage reports
41
- htmlcov/
42
- .tox/
43
- .nox/
44
- .coverage
45
- .coverage.*
46
- .cache
47
- nosetests.xml
48
- coverage.xml
49
- *.cover
50
- *.py,cover
51
- .hypothesis/
52
- .pytest_cache/
53
-
54
- # Translations
55
- *.mo
56
- *.pot
57
-
58
- # Django stuff:
59
- *.log
60
- local_settings.py
61
- db.sqlite3
62
- db.sqlite3-journal
63
-
64
- # Flask stuff:
65
- instance/
66
- .webassets-cache
67
-
68
- # Scrapy stuff:
69
- .scrapy
70
-
71
- # Sphinx documentation
72
- docs/_build/
73
-
74
- # PyBuilder
75
- target/
76
-
77
- # Jupyter Notebook
78
- .ipynb_checkpoints
79
-
80
- # IPython
81
- profile_default/
82
- ipython_config.py
83
-
84
- # pyenv
85
- .python-version
86
-
87
- # pipenv
88
- # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
89
- # However, in case of collaboration, if having platform-specific dependencies or dependencies
90
- # having no cross-platform support, pipenv may install dependencies that don't work, or not
91
- # install all needed dependencies.
92
- #Pipfile.lock
93
-
94
- # PEP 582; used by e.g. github.com/David-OConnor/pyflow
95
- __pypackages__/
96
-
97
- # Celery stuff
98
- celerybeat-schedule
99
- celerybeat.pid
100
-
101
- # SageMath parsed files
102
- *.sage.py
103
-
104
- # Environments
105
- .env
106
- .venv
107
- env/
108
- venv/
109
- ENV/
110
- env.bak/
111
- venv.bak/
112
-
113
- # Spyder project settings
114
- .spyderproject
115
- .spyproject
116
-
117
- # Rope project settings
118
- .ropeproject
119
-
120
- # mkdocs documentation
121
- /site
122
-
123
- # mypy
124
- .mypy_cache/
125
- .dmypy.json
126
- dmypy.json
127
-
128
- # Pyre type checker
129
- .pyre/
130
-
131
- # Custom dataset
132
- pretrained_models
133
- results_test
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/models/encoder4editing/LICENSE DELETED
@@ -1,21 +0,0 @@
1
- MIT License
2
-
3
- Copyright (c) 2021 omertov
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/models/encoder4editing/README.md DELETED
@@ -1,143 +0,0 @@
1
- # Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021)
2
- <a href="https://arxiv.org/abs/2102.02766"><img src="https://img.shields.io/badge/arXiv-2008.00951-b31b1b.svg"></a>
3
- <a href="https://opensource.org/licenses/MIT"><img src="https://img.shields.io/badge/License-MIT-yellow.svg"></a>
4
- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/omertov/encoder4editing/blob/main/notebooks/inference_playground.ipynb)
5
-
6
- > Recently, there has been a surge of diverse methods for performing image editing by employing pre-trained unconditional generators. Applying these methods on real images, however, remains a challenge, as it necessarily requires the inversion of the images into their latent space. To successfully invert a real image, one needs to find a latent code that reconstructs the input image accurately, and more importantly, allows for its meaningful manipulation. In this paper, we carefully study the latent space of StyleGAN, the state-of-the-art unconditional generator. We identify and analyze the existence of a distortion-editability tradeoff and a distortion-perception tradeoff within the StyleGAN latent space. We then suggest two principles for designing encoders in a manner that allows one to control the proximity of the inversions to regions that StyleGAN was originally trained on. We present an encoder based on our two principles that is specifically designed for facilitating editing on real images by balancing these tradeoffs. By evaluating its performance qualitatively and quantitatively on numerous challenging domains, including cars and horses, we show that our inversion method, followed by common editing techniques, achieves superior real-image editing quality, with only a small reconstruction accuracy drop.
7
-
8
- <p align="center">
9
- <img src="docs/teaser.jpg" width="800px"/>
10
- </p>
11
-
12
- ## Description
13
- Official Implementation of "<a href="https://arxiv.org/abs/2102.02766">Designing an Encoder for StyleGAN Image Manipulation</a>" paper for both training and evaluation.
14
- The e4e encoder is specifically designed to complement existing image manipulation techniques performed over StyleGAN's latent space.
15
-
16
- ## Recent Updates
17
- `2021.08.17`: Add single style code encoder (use `--encoder_type SingleStyleCodeEncoder`). <br />
18
- `2021.03.25`: Add pose editing direction.
19
-
20
- ## Getting Started
21
- ### Prerequisites
22
- - Linux or macOS
23
- - NVIDIA GPU + CUDA CuDNN (CPU may be possible with some modifications, but is not inherently supported)
24
- - Python 3
25
-
26
- ### Installation
27
- - Clone the repository:
28
- ```
29
- git clone https://github.com/omertov/encoder4editing.git
30
- cd encoder4editing
31
- ```
32
- - Dependencies:
33
- We recommend running this repository using [Anaconda](https://docs.anaconda.com/anaconda/install/).
34
- All dependencies for defining the environment are provided in `environment/e4e_env.yaml`.
35
-
36
- ### Inference Notebook
37
- We provide a Jupyter notebook found in `notebooks/inference_playground.ipynb` that allows one to encode and perform several editings on real images using StyleGAN.
38
-
39
- ### Pretrained Models
40
- Please download the pre-trained models from the following links. Each e4e model contains the entire pSp framework architecture, including the encoder and decoder weights.
41
- | Path | Description
42
- | :--- | :----------
43
- |[FFHQ Inversion](https://drive.google.com/file/d/1cUv_reLE6k3604or78EranS7XzuVMWeO/view?usp=sharing) | FFHQ e4e encoder.
44
- |[Cars Inversion](https://drive.google.com/file/d/17faPqBce2m1AQeLCLHUVXaDfxMRU2QcV/view?usp=sharing) | Cars e4e encoder.
45
- |[Horse Inversion](https://drive.google.com/file/d/1TkLLnuX86B_BMo2ocYD0kX9kWh53rUVX/view?usp=sharing) | Horse e4e encoder.
46
- |[Church Inversion](https://drive.google.com/file/d/1-L0ZdnQLwtdy6-A_Ccgq5uNJGTqE7qBa/view?usp=sharing) | Church e4e encoder.
47
-
48
- If you wish to use one of the pretrained models for training or inference, you may do so using the flag `--checkpoint_path`.
49
-
50
- In addition, we provide various auxiliary models needed for training your own e4e model from scratch.
51
- | Path | Description
52
- | :--- | :----------
53
- |[FFHQ StyleGAN](https://drive.google.com/file/d/1EM87UquaoQmk17Q8d5kYIAHqu0dkYqdT/view?usp=sharing) | StyleGAN model pretrained on FFHQ taken from [rosinality](https://github.com/rosinality/stylegan2-pytorch) with 1024x1024 output resolution.
54
- |[IR-SE50 Model](https://drive.google.com/file/d/1KW7bjndL3QG3sxBbZxreGHigcCCpsDgn/view?usp=sharing) | Pretrained IR-SE50 model taken from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch) for use in our ID loss during training.
55
- |[MOCOv2 Model](https://drive.google.com/file/d/18rLcNGdteX5LwT7sv_F7HWr12HpVEzVe/view?usp=sharing) | Pretrained ResNet-50 model trained using MOCOv2 for use in our simmilarity loss for domains other then human faces during training.
56
-
57
- By default, we assume that all auxiliary models are downloaded and saved to the directory `pretrained_models`. However, you may use your own paths by changing the necessary values in `configs/path_configs.py`.
58
-
59
- ## Training
60
- To train the e4e encoder, make sure the paths to the required models, as well as training and testing data is configured in `configs/path_configs.py` and `configs/data_configs.py`.
61
- #### **Training the e4e Encoder**
62
- ```
63
- python scripts/train.py \
64
- --dataset_type cars_encode \
65
- --exp_dir new/experiment/directory \
66
- --start_from_latent_avg \
67
- --use_w_pool \
68
- --w_discriminator_lambda 0.1 \
69
- --progressive_start 20000 \
70
- --id_lambda 0.5 \
71
- --val_interval 10000 \
72
- --max_steps 200000 \
73
- --stylegan_size 512 \
74
- --stylegan_weights path/to/pretrained/stylegan.pt \
75
- --workers 8 \
76
- --batch_size 8 \
77
- --test_batch_size 4 \
78
- --test_workers 4
79
- ```
80
-
81
- #### Training on your own dataset
82
- In order to train the e4e encoder on a custom dataset, perform the following adjustments:
83
- 1. Insert the paths to your train and test data into the `dataset_paths` variable defined in `configs/paths_config.py`:
84
- ```
85
- dataset_paths = {
86
- 'my_train_data': '/path/to/train/images/directory',
87
- 'my_test_data': '/path/to/test/images/directory'
88
- }
89
- ```
90
- 2. Configure a new dataset under the DATASETS variable defined in `configs/data_configs.py`:
91
- ```
92
- DATASETS = {
93
- 'my_data_encode': {
94
- 'transforms': transforms_config.EncodeTransforms,
95
- 'train_source_root': dataset_paths['my_train_data'],
96
- 'train_target_root': dataset_paths['my_train_data'],
97
- 'test_source_root': dataset_paths['my_test_data'],
98
- 'test_target_root': dataset_paths['my_test_data']
99
- }
100
- }
101
- ```
102
- Refer to `configs/transforms_config.py` for the transformations applied to the train and test images during training.
103
-
104
- 3. Finally, run a training session with `--dataset_type my_data_encode`.
105
-
106
- ## Inference
107
- Having trained your model, you can use `scripts/inference.py` to apply the model on a set of images.
108
- For example,
109
- ```
110
- python scripts/inference.py \
111
- --images_dir=/path/to/images/directory \
112
- --save_dir=/path/to/saving/directory \
113
- path/to/checkpoint.pt
114
- ```
115
-
116
- ## Latent Editing Consistency (LEC)
117
- As described in the paper, we suggest a new metric, Latent Editing Consistency (LEC), for evaluating the encoder's
118
- performance.
119
- We provide an example for calculating the metric over the FFHQ StyleGAN using the aging editing direction in
120
- `metrics/LEC.py`.
121
-
122
- To run the example:
123
- ```
124
- cd metrics
125
- python LEC.py \
126
- --images_dir=/path/to/images/directory \
127
- path/to/checkpoint.pt
128
- ```
129
-
130
- ## Acknowledgments
131
- This code borrows heavily from [pixel2style2pixel](https://github.com/eladrich/pixel2style2pixel)
132
-
133
- ## Citation
134
- If you use this code for your research, please cite our paper <a href="https://arxiv.org/abs/2102.02766">Designing an Encoder for StyleGAN Image Manipulation</a>:
135
-
136
- ```
137
- @article{tov2021designing,
138
- title={Designing an Encoder for StyleGAN Image Manipulation},
139
- author={Tov, Omer and Alaluf, Yuval and Nitzan, Yotam and Patashnik, Or and Cohen-Or, Daniel},
140
- journal={arXiv preprint arXiv:2102.02766},
141
- year={2021}
142
- }
143
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/models/encoder4editing/__init__.py DELETED
@@ -1,15 +0,0 @@
1
- from .utils.model_utils import setup_model
2
-
3
-
4
- def get_latents(net, x, is_cars=False):
5
- codes = net.encoder(x)
6
- if net.opts.start_from_latent_avg:
7
- if codes.ndim == 2:
8
- codes = codes + net.latent_avg.repeat(codes.shape[0], 1, 1)[:, 0, :]
9
- else:
10
- codes = codes + net.latent_avg.repeat(codes.shape[0], 1, 1)
11
- if codes.shape[1] == 18 and is_cars:
12
- codes = codes[:, :16, :]
13
- return codes
14
-
15
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/models/encoder4editing/bash_scripts/inference.sh DELETED
@@ -1,15 +0,0 @@
1
- set -exo
2
-
3
- list="$1"
4
- ckpt="${2:-pretrained_models/e4e_ffhq_encode.pt}"
5
-
6
- base_dir="$REPHOTO/dataset/historically_interesting/aligned/manual_celebrity_in_19th_century/tier1/${list}/"
7
- save_dir="results_test/${list}/"
8
-
9
-
10
- TORCH_EXTENSIONS_DIR=/tmp/torch_extensions
11
- PYTHONPATH="" \
12
- python scripts/inference.py \
13
- --images_dir="${base_dir}" \
14
- --save_dir="${save_dir}" \
15
- "${ckpt}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/models/encoder4editing/configs/__init__.py DELETED
File without changes
Time_TravelRephotography/models/encoder4editing/configs/data_configs.py DELETED
@@ -1,41 +0,0 @@
1
- from configs import transforms_config
2
- from configs.paths_config import dataset_paths
3
-
4
-
5
- DATASETS = {
6
- 'ffhq_encode': {
7
- 'transforms': transforms_config.EncodeTransforms,
8
- 'train_source_root': dataset_paths['ffhq'],
9
- 'train_target_root': dataset_paths['ffhq'],
10
- 'test_source_root': dataset_paths['celeba_test'],
11
- 'test_target_root': dataset_paths['celeba_test'],
12
- },
13
- 'cars_encode': {
14
- 'transforms': transforms_config.CarsEncodeTransforms,
15
- 'train_source_root': dataset_paths['cars_train'],
16
- 'train_target_root': dataset_paths['cars_train'],
17
- 'test_source_root': dataset_paths['cars_test'],
18
- 'test_target_root': dataset_paths['cars_test'],
19
- },
20
- 'horse_encode': {
21
- 'transforms': transforms_config.EncodeTransforms,
22
- 'train_source_root': dataset_paths['horse_train'],
23
- 'train_target_root': dataset_paths['horse_train'],
24
- 'test_source_root': dataset_paths['horse_test'],
25
- 'test_target_root': dataset_paths['horse_test'],
26
- },
27
- 'church_encode': {
28
- 'transforms': transforms_config.EncodeTransforms,
29
- 'train_source_root': dataset_paths['church_train'],
30
- 'train_target_root': dataset_paths['church_train'],
31
- 'test_source_root': dataset_paths['church_test'],
32
- 'test_target_root': dataset_paths['church_test'],
33
- },
34
- 'cats_encode': {
35
- 'transforms': transforms_config.EncodeTransforms,
36
- 'train_source_root': dataset_paths['cats_train'],
37
- 'train_target_root': dataset_paths['cats_train'],
38
- 'test_source_root': dataset_paths['cats_test'],
39
- 'test_target_root': dataset_paths['cats_test'],
40
- }
41
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/models/encoder4editing/configs/paths_config.py DELETED
@@ -1,28 +0,0 @@
1
- dataset_paths = {
2
- # Face Datasets (In the paper: FFHQ - train, CelebAHQ - test)
3
- 'ffhq': '',
4
- 'celeba_test': '',
5
-
6
- # Cars Dataset (In the paper: Stanford cars)
7
- 'cars_train': '',
8
- 'cars_test': '',
9
-
10
- # Horse Dataset (In the paper: LSUN Horse)
11
- 'horse_train': '',
12
- 'horse_test': '',
13
-
14
- # Church Dataset (In the paper: LSUN Church)
15
- 'church_train': '',
16
- 'church_test': '',
17
-
18
- # Cats Dataset (In the paper: LSUN Cat)
19
- 'cats_train': '',
20
- 'cats_test': ''
21
- }
22
-
23
- model_paths = {
24
- 'stylegan_ffhq': 'pretrained_models/stylegan2-ffhq-config-f.pt',
25
- 'ir_se50': 'pretrained_models/model_ir_se50.pth',
26
- 'shape_predictor': 'pretrained_models/shape_predictor_68_face_landmarks.dat',
27
- 'moco': 'pretrained_models/moco_v2_800ep_pretrain.pth'
28
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/models/encoder4editing/configs/transforms_config.py DELETED
@@ -1,62 +0,0 @@
1
- from abc import abstractmethod
2
- import torchvision.transforms as transforms
3
-
4
-
5
- class TransformsConfig(object):
6
-
7
- def __init__(self, opts):
8
- self.opts = opts
9
-
10
- @abstractmethod
11
- def get_transforms(self):
12
- pass
13
-
14
-
15
- class EncodeTransforms(TransformsConfig):
16
-
17
- def __init__(self, opts):
18
- super(EncodeTransforms, self).__init__(opts)
19
-
20
- def get_transforms(self):
21
- transforms_dict = {
22
- 'transform_gt_train': transforms.Compose([
23
- transforms.Resize((256, 256)),
24
- transforms.RandomHorizontalFlip(0.5),
25
- transforms.ToTensor(),
26
- transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
27
- 'transform_source': None,
28
- 'transform_test': transforms.Compose([
29
- transforms.Resize((256, 256)),
30
- transforms.ToTensor(),
31
- transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
32
- 'transform_inference': transforms.Compose([
33
- transforms.Resize((256, 256)),
34
- transforms.ToTensor(),
35
- transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
36
- }
37
- return transforms_dict
38
-
39
-
40
- class CarsEncodeTransforms(TransformsConfig):
41
-
42
- def __init__(self, opts):
43
- super(CarsEncodeTransforms, self).__init__(opts)
44
-
45
- def get_transforms(self):
46
- transforms_dict = {
47
- 'transform_gt_train': transforms.Compose([
48
- transforms.Resize((192, 256)),
49
- transforms.RandomHorizontalFlip(0.5),
50
- transforms.ToTensor(),
51
- transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
52
- 'transform_source': None,
53
- 'transform_test': transforms.Compose([
54
- transforms.Resize((192, 256)),
55
- transforms.ToTensor(),
56
- transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
57
- 'transform_inference': transforms.Compose([
58
- transforms.Resize((192, 256)),
59
- transforms.ToTensor(),
60
- transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
61
- }
62
- return transforms_dict
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/models/encoder4editing/criteria/__init__.py DELETED
File without changes
Time_TravelRephotography/models/encoder4editing/criteria/id_loss.py DELETED
@@ -1,47 +0,0 @@
1
- import torch
2
- from torch import nn
3
- from configs.paths_config import model_paths
4
- from models.encoders.model_irse import Backbone
5
-
6
-
7
- class IDLoss(nn.Module):
8
- def __init__(self):
9
- super(IDLoss, self).__init__()
10
- print('Loading ResNet ArcFace')
11
- self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se')
12
- self.facenet.load_state_dict(torch.load(model_paths['ir_se50']))
13
- self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112))
14
- self.facenet.eval()
15
- for module in [self.facenet, self.face_pool]:
16
- for param in module.parameters():
17
- param.requires_grad = False
18
-
19
- def extract_feats(self, x):
20
- x = x[:, :, 35:223, 32:220] # Crop interesting region
21
- x = self.face_pool(x)
22
- x_feats = self.facenet(x)
23
- return x_feats
24
-
25
- def forward(self, y_hat, y, x):
26
- n_samples = x.shape[0]
27
- x_feats = self.extract_feats(x)
28
- y_feats = self.extract_feats(y) # Otherwise use the feature from there
29
- y_hat_feats = self.extract_feats(y_hat)
30
- y_feats = y_feats.detach()
31
- loss = 0
32
- sim_improvement = 0
33
- id_logs = []
34
- count = 0
35
- for i in range(n_samples):
36
- diff_target = y_hat_feats[i].dot(y_feats[i])
37
- diff_input = y_hat_feats[i].dot(x_feats[i])
38
- diff_views = y_feats[i].dot(x_feats[i])
39
- id_logs.append({'diff_target': float(diff_target),
40
- 'diff_input': float(diff_input),
41
- 'diff_views': float(diff_views)})
42
- loss += 1 - diff_target
43
- id_diff = float(diff_target) - float(diff_views)
44
- sim_improvement += id_diff
45
- count += 1
46
-
47
- return loss / count, sim_improvement / count, id_logs
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/models/encoder4editing/criteria/lpips/__init__.py DELETED
File without changes
Time_TravelRephotography/models/encoder4editing/criteria/lpips/lpips.py DELETED
@@ -1,35 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
-
4
- from criteria.lpips.networks import get_network, LinLayers
5
- from criteria.lpips.utils import get_state_dict
6
-
7
-
8
- class LPIPS(nn.Module):
9
- r"""Creates a criterion that measures
10
- Learned Perceptual Image Patch Similarity (LPIPS).
11
- Arguments:
12
- net_type (str): the network type to compare the features:
13
- 'alex' | 'squeeze' | 'vgg'. Default: 'alex'.
14
- version (str): the version of LPIPS. Default: 0.1.
15
- """
16
- def __init__(self, net_type: str = 'alex', version: str = '0.1'):
17
-
18
- assert version in ['0.1'], 'v0.1 is only supported now'
19
-
20
- super(LPIPS, self).__init__()
21
-
22
- # pretrained network
23
- self.net = get_network(net_type).to("cuda")
24
-
25
- # linear layers
26
- self.lin = LinLayers(self.net.n_channels_list).to("cuda")
27
- self.lin.load_state_dict(get_state_dict(net_type, version))
28
-
29
- def forward(self, x: torch.Tensor, y: torch.Tensor):
30
- feat_x, feat_y = self.net(x), self.net(y)
31
-
32
- diff = [(fx - fy) ** 2 for fx, fy in zip(feat_x, feat_y)]
33
- res = [l(d).mean((2, 3), True) for d, l in zip(diff, self.lin)]
34
-
35
- return torch.sum(torch.cat(res, 0)) / x.shape[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/models/encoder4editing/criteria/lpips/networks.py DELETED
@@ -1,96 +0,0 @@
1
- from typing import Sequence
2
-
3
- from itertools import chain
4
-
5
- import torch
6
- import torch.nn as nn
7
- from torchvision import models
8
-
9
- from criteria.lpips.utils import normalize_activation
10
-
11
-
12
- def get_network(net_type: str):
13
- if net_type == 'alex':
14
- return AlexNet()
15
- elif net_type == 'squeeze':
16
- return SqueezeNet()
17
- elif net_type == 'vgg':
18
- return VGG16()
19
- else:
20
- raise NotImplementedError('choose net_type from [alex, squeeze, vgg].')
21
-
22
-
23
- class LinLayers(nn.ModuleList):
24
- def __init__(self, n_channels_list: Sequence[int]):
25
- super(LinLayers, self).__init__([
26
- nn.Sequential(
27
- nn.Identity(),
28
- nn.Conv2d(nc, 1, 1, 1, 0, bias=False)
29
- ) for nc in n_channels_list
30
- ])
31
-
32
- for param in self.parameters():
33
- param.requires_grad = False
34
-
35
-
36
- class BaseNet(nn.Module):
37
- def __init__(self):
38
- super(BaseNet, self).__init__()
39
-
40
- # register buffer
41
- self.register_buffer(
42
- 'mean', torch.Tensor([-.030, -.088, -.188])[None, :, None, None])
43
- self.register_buffer(
44
- 'std', torch.Tensor([.458, .448, .450])[None, :, None, None])
45
-
46
- def set_requires_grad(self, state: bool):
47
- for param in chain(self.parameters(), self.buffers()):
48
- param.requires_grad = state
49
-
50
- def z_score(self, x: torch.Tensor):
51
- return (x - self.mean) / self.std
52
-
53
- def forward(self, x: torch.Tensor):
54
- x = self.z_score(x)
55
-
56
- output = []
57
- for i, (_, layer) in enumerate(self.layers._modules.items(), 1):
58
- x = layer(x)
59
- if i in self.target_layers:
60
- output.append(normalize_activation(x))
61
- if len(output) == len(self.target_layers):
62
- break
63
- return output
64
-
65
-
66
- class SqueezeNet(BaseNet):
67
- def __init__(self):
68
- super(SqueezeNet, self).__init__()
69
-
70
- self.layers = models.squeezenet1_1(True).features
71
- self.target_layers = [2, 5, 8, 10, 11, 12, 13]
72
- self.n_channels_list = [64, 128, 256, 384, 384, 512, 512]
73
-
74
- self.set_requires_grad(False)
75
-
76
-
77
- class AlexNet(BaseNet):
78
- def __init__(self):
79
- super(AlexNet, self).__init__()
80
-
81
- self.layers = models.alexnet(True).features
82
- self.target_layers = [2, 5, 8, 10, 12]
83
- self.n_channels_list = [64, 192, 384, 256, 256]
84
-
85
- self.set_requires_grad(False)
86
-
87
-
88
- class VGG16(BaseNet):
89
- def __init__(self):
90
- super(VGG16, self).__init__()
91
-
92
- self.layers = models.vgg16(True).features
93
- self.target_layers = [4, 9, 16, 23, 30]
94
- self.n_channels_list = [64, 128, 256, 512, 512]
95
-
96
- self.set_requires_grad(False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time_TravelRephotography/models/encoder4editing/criteria/lpips/utils.py DELETED
@@ -1,30 +0,0 @@
1
- from collections import OrderedDict
2
-
3
- import torch
4
-
5
-
6
- def normalize_activation(x, eps=1e-10):
7
- norm_factor = torch.sqrt(torch.sum(x ** 2, dim=1, keepdim=True))
8
- return x / (norm_factor + eps)
9
-
10
-
11
- def get_state_dict(net_type: str = 'alex', version: str = '0.1'):
12
- # build url
13
- url = 'https://raw.githubusercontent.com/richzhang/PerceptualSimilarity/' \
14
- + f'master/lpips/weights/v{version}/{net_type}.pth'
15
-
16
- # download
17
- old_state_dict = torch.hub.load_state_dict_from_url(
18
- url, progress=True,
19
- map_location=None if torch.cuda.is_available() else torch.device('cpu')
20
- )
21
-
22
- # rename keys
23
- new_state_dict = OrderedDict()
24
- for key, val in old_state_dict.items():
25
- new_key = key
26
- new_key = new_key.replace('lin', '')
27
- new_key = new_key.replace('model.', '')
28
- new_state_dict[new_key] = val
29
-
30
- return new_state_dict