feng2022 commited on
Commit
991a44c
1 Parent(s): 9f4086d

Update Time_TravelRephotography/op/fused_act.py

Browse files
Time_TravelRephotography/op/fused_act.py CHANGED
@@ -1,87 +1,108 @@
1
  import os
2
-
 
3
  import torch
4
- from torch import nn
5
- from torch.autograd import Function
6
- from torch.utils.cpp_extension import load
7
-
8
-
9
- module_path = os.path.dirname(__file__)
10
- #fused = load(
11
- # 'fused',
12
- # sources=[
13
- # os.path.join(module_path, 'fused_bias_act.cpp'),
14
- # os.path.join(module_path, 'fused_bias_act_kernel.cu'),
15
- # ],
16
- #)
17
-
18
-
19
- class FusedLeakyReLUFunctionBackward(Function):
20
- @staticmethod
21
- def forward(ctx, grad_output, out, negative_slope, scale):
22
- ctx.save_for_backward(out)
23
- ctx.negative_slope = negative_slope
24
- ctx.scale = scale
25
-
26
- empty = grad_output.new_empty(0)
27
-
28
- grad_input = fused.fused_bias_act(
29
- grad_output, empty, out, 3, 1, negative_slope, scale
30
- )
31
-
32
- dim = [0]
33
-
34
- if grad_input.ndim > 2:
35
- dim += list(range(2, grad_input.ndim))
36
-
37
- grad_bias = grad_input.sum(dim).detach()
38
-
39
- return grad_input, grad_bias
40
-
41
- @staticmethod
42
- def backward(ctx, gradgrad_input, gradgrad_bias):
43
- out, = ctx.saved_tensors
44
- gradgrad_out = fused.fused_bias_act(
45
- gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale
46
- )
47
-
48
- return gradgrad_out, None, None, None
49
-
50
-
51
- class FusedLeakyReLUFunction(Function):
52
- @staticmethod
53
- def forward(ctx, input, bias, negative_slope, scale):
54
- empty = input.new_empty(0)
55
- out = fused.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale)
56
- ctx.save_for_backward(out)
57
- ctx.negative_slope = negative_slope
58
- ctx.scale = scale
59
-
60
- return out
61
-
62
- @staticmethod
63
- def backward(ctx, grad_output):
64
- out, = ctx.saved_tensors
65
-
66
- grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
67
- grad_output, out, ctx.negative_slope, ctx.scale
68
- )
69
-
70
- return grad_input, grad_bias, None, None
71
-
72
-
73
- class FusedLeakyReLU(nn.Module):
74
- def __init__(self, bias, negative_slope=0.2, scale=2 ** 0.5):
75
- super().__init__()
76
-
77
- self.bias= bias
78
- self.negative_slope = negative_slope
79
- self.scale = scale
80
-
81
- def forward(self, input):
82
- return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
83
-
84
-
85
- def fused_leaky_relu(input, bias):
86
- return FusedLeakyReLU.apply(input, bias)
87
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ import warnings
3
+ import numpy as np
4
  import torch
5
+ import dnnlib
6
+ import traceback
7
+
8
+ from .. import custom_ops
9
+ from .. import misc
10
+
11
+ #----------------------------------------------------------------------------
12
+
13
+ activation_funcs = {
14
+ 'linear': dnnlib.EasyDict(func=lambda x, **_: x, def_alpha=0, def_gain=1, cuda_idx=1, ref='', has_2nd_grad=False),
15
+ 'relu': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.relu(x), def_alpha=0, def_gain=np.sqrt(2), cuda_idx=2, ref='y', has_2nd_grad=False),
16
+ 'lrelu': dnnlib.EasyDict(func=lambda x, alpha, **_: torch.nn.functional.leaky_relu(x, alpha), def_alpha=0.2, def_gain=np.sqrt(2), cuda_idx=3, ref='y', has_2nd_grad=False),
17
+ 'tanh': dnnlib.EasyDict(func=lambda x, **_: torch.tanh(x), def_alpha=0, def_gain=1, cuda_idx=4, ref='y', has_2nd_grad=True),
18
+ 'sigmoid': dnnlib.EasyDict(func=lambda x, **_: torch.sigmoid(x), def_alpha=0, def_gain=1, cuda_idx=5, ref='y', has_2nd_grad=True),
19
+ 'elu': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.elu(x), def_alpha=0, def_gain=1, cuda_idx=6, ref='y', has_2nd_grad=True),
20
+ 'selu': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.selu(x), def_alpha=0, def_gain=1, cuda_idx=7, ref='y', has_2nd_grad=True),
21
+ 'softplus': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.softplus(x), def_alpha=0, def_gain=1, cuda_idx=8, ref='y', has_2nd_grad=True),
22
+ 'swish': dnnlib.EasyDict(func=lambda x, **_: torch.sigmoid(x) * x, def_alpha=0, def_gain=np.sqrt(2), cuda_idx=9, ref='x', has_2nd_grad=True),
23
+ }
24
+
25
+ #----------------------------------------------------------------------------
26
+
27
+ _inited = False
28
+ _plugin = None
29
+ _null_tensor = torch.empty([0])
30
+
31
+ def _init():
32
+ global _inited, _plugin
33
+ if not _inited:
34
+ _inited = True
35
+ sources = ['bias_act.cpp', 'bias_act.cu']
36
+ sources = [os.path.join(os.path.dirname(__file__), s) for s in sources]
37
+ try:
38
+ _plugin = custom_ops.get_plugin('bias_act_plugin', sources=sources, extra_cuda_cflags=['--use_fast_math'])
39
+ except:
40
+ warnings.warn('Failed to build CUDA kernels for bias_act. Falling back to slow reference implementation. Details:\n\n' + traceback.format_exc())
41
+ return _plugin is not None
42
+
43
+ #----------------------------------------------------------------------------
44
+
45
+ def bias_act(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=None, impl='cuda'):
46
+ r"""Fused bias and activation function.
47
+ Adds bias `b` to activation tensor `x`, evaluates activation function `act`,
48
+ and scales the result by `gain`. Each of the steps is optional. In most cases,
49
+ the fused op is considerably more efficient than performing the same calculation
50
+ using standard PyTorch ops. It supports first and second order gradients,
51
+ but not third order gradients.
52
+ Args:
53
+ x: Input activation tensor. Can be of any shape.
54
+ b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type
55
+ as `x`. The shape must be known, and it must match the dimension of `x`
56
+ corresponding to `dim`.
57
+ dim: The dimension in `x` corresponding to the elements of `b`.
58
+ The value of `dim` is ignored if `b` is not specified.
59
+ act: Name of the activation function to evaluate, or `"linear"` to disable.
60
+ Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc.
61
+ See `activation_funcs` for a full list. `None` is not allowed.
62
+ alpha: Shape parameter for the activation function, or `None` to use the default.
63
+ gain: Scaling factor for the output tensor, or `None` to use default.
64
+ See `activation_funcs` for the default scaling of each activation function.
65
+ If unsure, consider specifying 1.
66
+ clamp: Clamp the output values to `[-clamp, +clamp]`, or `None` to disable
67
+ the clamping (default).
68
+ impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
69
+ Returns:
70
+ Tensor of the same shape and datatype as `x`.
71
+ """
72
+ assert isinstance(x, torch.Tensor)
73
+ assert impl in ['ref', 'cuda']
74
+ return _bias_act_ref(x=x, b=b, dim=dim, act=act, alpha=alpha, gain=gain, clamp=clamp)
75
+
76
+ #----------------------------------------------------------------------------
77
+
78
+ @misc.profiled_function
79
+ def _bias_act_ref(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=None):
80
+ """Slow reference implementation of `bias_act()` using standard TensorFlow ops.
81
+ """
82
+ assert isinstance(x, torch.Tensor)
83
+ assert clamp is None or clamp >= 0
84
+ spec = activation_funcs[act]
85
+ alpha = float(alpha if alpha is not None else spec.def_alpha)
86
+ gain = float(gain if gain is not None else spec.def_gain)
87
+ clamp = float(clamp if clamp is not None else -1)
88
+
89
+ # Add bias.
90
+ if b is not None:
91
+ assert isinstance(b, torch.Tensor) and b.ndim == 1
92
+ assert 0 <= dim < x.ndim
93
+ assert b.shape[0] == x.shape[dim]
94
+ x = x + b.reshape([-1 if i == dim else 1 for i in range(x.ndim)])
95
+
96
+ # Evaluate activation function.
97
+ alpha = float(alpha)
98
+ x = spec.func(x, alpha=alpha)
99
+
100
+ # Scale by gain.
101
+ gain = float(gain)
102
+ if gain != 1:
103
+ x = x * gain
104
+
105
+ # Clamp.
106
+ if clamp >= 0:
107
+ x = x.clamp(-clamp, clamp) # pylint: disable=invalid-unary-operand-type
108
+ return