Spaces:
Runtime error
Runtime error
from argparse import ( | |
ArgumentParser, | |
Namespace, | |
) | |
import os | |
from os.path import join as pjoin | |
from typing import Optional | |
import sys | |
import numpy as np | |
import cv2 | |
from skimage import exposure | |
# sys.path.append('Face_Detection') | |
# from align_warp_back_multiple_dlib import match_histograms | |
def calculate_cdf(histogram): | |
""" | |
This method calculates the cumulative distribution function | |
:param array histogram: The values of the histogram | |
:return: normalized_cdf: The normalized cumulative distribution function | |
:rtype: array | |
""" | |
# Get the cumulative sum of the elements | |
cdf = histogram.cumsum() | |
# Normalize the cdf | |
normalized_cdf = cdf / float(cdf.max()) | |
return normalized_cdf | |
def calculate_lookup(src_cdf, ref_cdf): | |
""" | |
This method creates the lookup table | |
:param array src_cdf: The cdf for the source image | |
:param array ref_cdf: The cdf for the reference image | |
:return: lookup_table: The lookup table | |
:rtype: array | |
""" | |
lookup_table = np.zeros(256) | |
lookup_val = 0 | |
for src_pixel_val in range(len(src_cdf)): | |
lookup_val | |
for ref_pixel_val in range(len(ref_cdf)): | |
if ref_cdf[ref_pixel_val] >= src_cdf[src_pixel_val]: | |
lookup_val = ref_pixel_val | |
break | |
lookup_table[src_pixel_val] = lookup_val | |
return lookup_table | |
def match_histograms(src_image, ref_image, src_mask=None, ref_mask=None): | |
""" | |
This method matches the source image histogram to the | |
reference signal | |
:param image src_image: The original source image | |
:param image ref_image: The reference image | |
:return: image_after_matching | |
:rtype: image (array) | |
""" | |
# Split the images into the different color channels | |
# b means blue, g means green and r means red | |
src_b, src_g, src_r = cv2.split(src_image) | |
ref_b, ref_g, ref_r = cv2.split(ref_image) | |
def rv(im): | |
if ref_mask is None: | |
return im.flatten() | |
return im[ref_mask] | |
def sv(im): | |
if src_mask is None: | |
return im.flatten() | |
return im[src_mask] | |
# Compute the b, g, and r histograms separately | |
# The flatten() Numpy method returns a copy of the array c | |
# collapsed into one dimension. | |
src_hist_blue, bin_0 = np.histogram(sv(src_b), 256, [0, 256]) | |
src_hist_green, bin_1 = np.histogram(sv(src_g), 256, [0, 256]) | |
src_hist_red, bin_2 = np.histogram(sv(src_r), 256, [0, 256]) | |
ref_hist_blue, bin_3 = np.histogram(rv(ref_b), 256, [0, 256]) | |
ref_hist_green, bin_4 = np.histogram(rv(ref_g), 256, [0, 256]) | |
ref_hist_red, bin_5 = np.histogram(rv(ref_r), 256, [0, 256]) | |
# Compute the normalized cdf for the source and reference image | |
src_cdf_blue = calculate_cdf(src_hist_blue) | |
src_cdf_green = calculate_cdf(src_hist_green) | |
src_cdf_red = calculate_cdf(src_hist_red) | |
ref_cdf_blue = calculate_cdf(ref_hist_blue) | |
ref_cdf_green = calculate_cdf(ref_hist_green) | |
ref_cdf_red = calculate_cdf(ref_hist_red) | |
# Make a separate lookup table for each color | |
blue_lookup_table = calculate_lookup(src_cdf_blue, ref_cdf_blue) | |
green_lookup_table = calculate_lookup(src_cdf_green, ref_cdf_green) | |
red_lookup_table = calculate_lookup(src_cdf_red, ref_cdf_red) | |
# Use the lookup function to transform the colors of the original | |
# source image | |
blue_after_transform = cv2.LUT(src_b, blue_lookup_table) | |
green_after_transform = cv2.LUT(src_g, green_lookup_table) | |
red_after_transform = cv2.LUT(src_r, red_lookup_table) | |
# Put the image back together | |
image_after_matching = cv2.merge([blue_after_transform, green_after_transform, red_after_transform]) | |
image_after_matching = cv2.convertScaleAbs(image_after_matching) | |
return image_after_matching | |
def convert_to_BW(im, mode): | |
if mode == "b": | |
gray = im[..., 0] | |
elif mode == "gb": | |
gray = (im[..., 0].astype(float) + im[..., 1]) / 2.0 | |
else: | |
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) | |
gray = gray.astype(np.uint8) | |
return np.stack([gray] * 3, axis=-1) | |
def parse_args(args=None, namespace: Optional[Namespace] = None): | |
parser = ArgumentParser('match histogram of src to ref') | |
parser.add_argument('src') | |
parser.add_argument('ref') | |
parser.add_argument('--out', default=None, help="converted src that matches ref") | |
parser.add_argument('--src_mask', default=None, help="mask on which to match the histogram") | |
parser.add_argument('--ref_mask', default=None, help="mask on which to match the histogram") | |
parser.add_argument('--spectral_sensitivity', choices=['b', 'gb', 'g'], help="match the histogram of corresponding sensitive channel(s)") | |
parser.add_argument('--crop', type=int, default=0, help="crop the boundary to match") | |
return parser.parse_args(args=args, namespace=namespace) | |
def main(args): | |
A = cv2.imread(args.ref) | |
A = convert_to_BW(A, args.spectral_sensitivity) | |
B = cv2.imread(args.src, 0) | |
B = np.stack((B,) * 3, axis=-1) | |
mask_A = cv2.resize(cv2.imread(args.ref_mask, 0), A.shape[:2][::-1], | |
interpolation=cv2.INTER_NEAREST) > 0 if args.ref_mask else None | |
mask_B = cv2.resize(cv2.imread(args.src_mask, 0), B.shape[:2][::-1], | |
interpolation=cv2.INTER_NEAREST) > 0 if args.src_mask else None | |
if args.crop > 0: | |
c = args.crop | |
bc = int(c / A.shape[0] * B.shape[0] + 0.5) | |
A = A[c:-c, c:-c] | |
B = B[bc:-bc, bc:-bc] | |
B = match_histograms(B, A, src_mask=mask_B, ref_mask=mask_A) | |
# B = exposure.match_histograms(B, A, multichannel=True) | |
if args.out: | |
os.makedirs(os.path.dirname(args.out), exist_ok=True) | |
cv2.imwrite(args.out, B) | |
return B | |
if __name__ == "__main__": | |
main(parse_args()) | |