us-address-matching-model / quick_evaluate.py
Feliks Zaslavskiy
data work
6005876
raw
history blame
3.96 kB
#from transformers import AlbertTokenizer, AlbertModel
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
#This is a quick evaluation on a few cases
# base
# large
#tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
#model = AlbertModel.from_pretrained("albert-base-v2")
#'sentence-transformers/paraphrase-albert-base-v2'
model_name = 'output/training_OnlineConstrativeLoss-2023-03-10_11-17-15'
model_name = 'output/training_OnlineConstrativeLoss-2023-03-11_00-24-35'
model_name = 'output/training_OnlineConstrativeLoss-2023-03-11_01-00-19'
model_name='output/training_OnlineConstrativeLoss-2023-03-12_00-42-41'
model_sbert = SentenceTransformer(model_name)
def get_sbert_embedding(input_text):
embedding = model_sbert.encode(input_text)
return embedding.tolist()
a1 = "65 Mountain Blvd Ext, Warren, NJ 07059"
a2 = "112 Mountain Blvd Ext, Warren, NJ 07059"
a3 = "1677 NJ-27 #2, Edison, NJ 08817"
a4 = "5078 S Maryland Pkwy, Las Vegas, NV 89119"
a5 = "65 Mountain Boulevard Ext, Warren, NJ 07059"
a6 = "123 Broad St, New York, NY, 10304-2345"
a7 = "440 TECHNOLOGY CENTER DRIVE, Boston, MA 10034"
a8 = "200 Technology Center Drive, Boston, MA 10034"
a8x= "87 Technology Center Drive, Boston, MA 10034"
a9 = "440 Technology Center Dr., Boston, MA 10034-0345"
a10 = "440 Technology Center Dr., Boston, MA 10034"
a11="872 Route 13, Cortlandville NY 13045"
a12="87-2 Route 13, Cortlandville NY 13045"
a13="87-5 Route 13, Cortlandville NY 13045"
a14="257 37 US Rt 11, Evans Mills NY 13637"
a15="257-37 US Route 11, Evans Mills NY 13637"
#def get_embedding(input_text):
# encoded_input = tokenizer(input_text, return_tensors='pt')
# input_ids = encoded_input.input_ids
# input_num_tokens = input_ids.shape[1]
#
# print( "Number of input tokens: " + str(input_num_tokens))
# print("Length of input: " + str(len(input_text)))
#
# list_of_tokens = tokenizer.convert_ids_to_tokens(input_ids.view(-1).tolist())
#
# print( "Tokens : " + ' '.join(list_of_tokens))
# with torch.no_grad():
#
# outputs = model(**encoded_input)
# last_hidden_states = outputs[0]
# sentence_embedding = torch.mean(last_hidden_states[0], dim=0)
# #sentence_embedding = output.last_hidden_state[0][0]
# return sentence_embedding.tolist()
e1 = get_sbert_embedding(a1)
e2 = get_sbert_embedding(a2)
#e3 = get_sbert_embedding(a3)
e4 = get_sbert_embedding(a4)
e5 = get_sbert_embedding(a5)
e6 = get_sbert_embedding(a6)
e7 = get_sbert_embedding(a7)
e8 = get_sbert_embedding(a8)
e8x = get_sbert_embedding(a8x)
e9 = get_sbert_embedding(a9)
e10 = get_sbert_embedding(a10)
e11 = get_sbert_embedding(a11)
e12 = get_sbert_embedding(a12)
e13 = get_sbert_embedding(a13)
e14 = get_sbert_embedding(a14)
e15 = get_sbert_embedding(a15)
print(f"a1 \"{a1}\" to \"{a2}\" a2 - expected Different")
print(cosine_similarity([e1], [e2]))
print(f"a1 \"{a1}\" to \"{a4}\" a4 - expected Different")
print(cosine_similarity([e1], [e4]))
print(f"a1 \"{a1}\" to \"{a5}\" a5 - expected Same")
print(cosine_similarity([e1], [e5]))
print(f"a7 \"{a7}\" to \"{a8}\" a8 - expected Different")
print(cosine_similarity([e7], [e8]))
print(f"a7 \"{a7}\" to \"{a8x}\" a8x - expected Different")
print(cosine_similarity([e7], [e8x]))
print(f"a7 \"{a7}\" to \"{a9}\" a9 - expected Same")
print(cosine_similarity([e7], [e9]))
print(f"a7 \"{a7}\" to \"{a10}\" a10 - expected Same")
print(cosine_similarity([e7], [e10]))
print(f"a11 \"{a11}\" to \"{a12}\" a12 - expected Same")
print(cosine_similarity([e11], [e12]))
print(f"a11 \"{a11}\" to \"{a13}\" a13 - expected Different")
print(cosine_similarity([e11], [e13]))
print(f"a14 \"{a14}\" to \"{a15}\" a15 - expected Same")
print(cosine_similarity([e14], [e15]))
# with base
#a1 to a2
#[[0.99512167]]
#a1 to a4
#[[0.94850088]]
#a1 to a5
#[[0.99636901]]
# with large
#a1 to a2
#[[0.99682108]]
#a1 to a4
#[[0.94006972]]
#a1 to a5
#[[0.99503919]]