Spaces:
Running
Running
import tensorflow as tf | |
from tensorflow.keras.layers import Layer, Dense | |
def sin_activation(x, omega=30): | |
return tf.math.sin(omega * x) | |
class AdaIN(Layer): | |
def __init__(self, **kwargs): | |
super(AdaIN, self).__init__(**kwargs) | |
def build(self, input_shapes): | |
x_shape = input_shapes[0] | |
w_shape = input_shapes[1] | |
self.w_channels = w_shape[-1] | |
self.x_channels = x_shape[-1] | |
self.dense_1 = Dense(self.x_channels) | |
self.dense_2 = Dense(self.x_channels) | |
def call(self, inputs): | |
x, w = inputs | |
ys = tf.reshape(self.dense_1(w), (-1, 1, 1, self.x_channels)) | |
yb = tf.reshape(self.dense_2(w), (-1, 1, 1, self.x_channels)) | |
return ys * x + yb | |
def get_config(self): | |
config = { | |
#'w_channels': self.w_channels, | |
#'x_channels': self.x_channels | |
} | |
base_config = super(AdaIN, self).get_config() | |
return dict(list(base_config.items()) + list(config.items())) | |
class AdaptiveAttention(Layer): | |
def __init__(self, **kwargs): | |
super(AdaptiveAttention, self).__init__(**kwargs) | |
def call(self, inputs): | |
m, a, i = inputs | |
return (1 - m) * a + m * i | |
def get_config(self): | |
base_config = super(AdaptiveAttention, self).get_config() | |
return base_config | |