Spaces:
Sleeping
Sleeping
felipekitamura
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from sklearn.decomposition import PCA
|
6 |
+
from sklearn.manifold import TSNE
|
7 |
+
model = np.load('gpt2-1k-words.npy',allow_pickle='TRUE').item()
|
8 |
+
|
9 |
+
cache = "/home/user/app/d.jpg"
|
10 |
+
|
11 |
+
# Function to reduce dimensions
|
12 |
+
def reduce_dimensions(data, method='PCA'):
|
13 |
+
if method == 'PCA':
|
14 |
+
model = PCA(n_components=2)
|
15 |
+
elif method == 'TSNE':
|
16 |
+
model = TSNE(n_components=2, learning_rate='auto', init='random', perplexity=3)
|
17 |
+
return model.fit_transform(data)
|
18 |
+
|
19 |
+
# Plotting function
|
20 |
+
def plot_reduced_data(reduced_data, labels, title):
|
21 |
+
plt.figure(figsize=(10, 8))
|
22 |
+
plt.scatter(reduced_data[:, 0], reduced_data[:, 1], alpha=0.6)
|
23 |
+
for i, label in enumerate(labels):
|
24 |
+
plt.annotate(" " + label, (reduced_data[i, 0], reduced_data[i, 1]), fontsize=18)
|
25 |
+
plt.title(title)
|
26 |
+
# Data for the arrow 1
|
27 |
+
start_point = (reduced_data[0, 0], reduced_data[0, 1]) # Starting point of the arrow
|
28 |
+
end_point = (reduced_data[1, 0], reduced_data[1, 1]) # Ending point of the arrow
|
29 |
+
|
30 |
+
# Adding an arrow 1
|
31 |
+
plt.annotate('', xy=end_point, xytext=start_point,
|
32 |
+
arrowprops=dict(arrowstyle="->", color='green', lw=3))
|
33 |
+
|
34 |
+
# Data for the arrow 2
|
35 |
+
end_point = (reduced_data[-1, 0] , reduced_data[-1, 1]) # Starting point of the arrow
|
36 |
+
start_point = (reduced_data[2, 0], reduced_data[2, 1]) # Ending point of the arrow
|
37 |
+
|
38 |
+
# Adding an arrow 2
|
39 |
+
plt.annotate('', xy=end_point, xytext=start_point,
|
40 |
+
arrowprops=dict(arrowstyle="->", color='green', lw=3))
|
41 |
+
|
42 |
+
plt.xlabel('Component 1')
|
43 |
+
plt.ylabel('Component 2')
|
44 |
+
plt.grid(True)
|
45 |
+
plt.savefig(cache)
|
46 |
+
|
47 |
+
description = """
|
48 |
+
### Word Embedding Demo App
|
49 |
+
Universidade Federal de São Paulo - Escola Paulista de Medicina
|
50 |
+
The output is Word3 + (Word2 - Word1)
|
51 |
+
Credits:
|
52 |
+
* Gensim
|
53 |
+
* Glove
|
54 |
+
"""
|
55 |
+
|
56 |
+
Word1 = gr.Textbox()
|
57 |
+
Word2 = gr.Textbox()
|
58 |
+
Word3 = gr.Textbox()
|
59 |
+
label = gr.Label(show_label=True, label="Word4")
|
60 |
+
sp = gr.Image()
|
61 |
+
|
62 |
+
|
63 |
+
def inference(word1, word2, word3):
|
64 |
+
transform = model[word3] + model[word2] - model[word1]
|
65 |
+
output = model.similar_by_vector(transform)
|
66 |
+
print(output)
|
67 |
+
word_list = [word1, word2, word3]
|
68 |
+
word_list.extend([x for x,y in [item for item in output[:4]]])
|
69 |
+
words = {key: model[key] for key in word_list}
|
70 |
+
words[word3 + " + (" + word2 + " - " + word1 + ")"] = transform
|
71 |
+
data = np.concatenate([x[np.newaxis, :] for x in words.values()], axis=0)
|
72 |
+
print(data.shape)
|
73 |
+
labels = words.keys()
|
74 |
+
reduced_data_pca = reduce_dimensions(data, method='PCA')
|
75 |
+
print(reduced_data_pca.shape)
|
76 |
+
plot_reduced_data(reduced_data_pca, labels, 'PCA Results')
|
77 |
+
return cache
|
78 |
+
|
79 |
+
examples = [
|
80 |
+
["woman", "man", "aunt"],
|
81 |
+
["woman", "man", "girl"],
|
82 |
+
["woman", "man", "granddaughter"],
|
83 |
+
]
|
84 |
+
|
85 |
+
iface = gr.Interface(
|
86 |
+
fn=inference,
|
87 |
+
inputs=[Word1, Word2, Word3],
|
88 |
+
outputs=sp,
|
89 |
+
description=description,
|
90 |
+
examples=examples
|
91 |
+
)
|
92 |
+
|
93 |
+
iface.launch()
|