Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
CHANGED
@@ -46,9 +46,9 @@ parser.add_argument('--if_resampler', type=bool, default=True)
|
|
46 |
parser.add_argument('--if_ipa', type=bool, default=True)
|
47 |
parser.add_argument('--if_control', type=bool, default=True)
|
48 |
|
49 |
-
parser.add_argument('--pretrained_model_name_or_path',
|
50 |
-
|
51 |
-
|
52 |
parser.add_argument('--ip_ckpt',
|
53 |
default="./ckpt/ip-adapter-faceid-plus_sd15.bin",
|
54 |
type=str)
|
@@ -86,7 +86,7 @@ image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.pretrained_im
|
|
86 |
unet = UNet2DConditionModel.from_pretrained("./ckpt/unet").to(
|
87 |
dtype=torch.float16,device=args.device)
|
88 |
|
89 |
-
image_face_fusion = pipeline('face_fusion_torch', model='damo/cv_unet_face_fusion_torch', model_revision='v1.0.3')
|
90 |
|
91 |
#face_model
|
92 |
app = FaceAnalysis(providers=[('CUDAExecutionProvider', {"device_id": args.device})]) ##使用GPU:0, 默认使用buffalo_l就可以了
|
@@ -186,7 +186,7 @@ img_transform = transforms.Compose([
|
|
186 |
transforms.Normalize([0.5], [0.5]),
|
187 |
])
|
188 |
|
189 |
-
openpose_model = OpenposeDetector.from_pretrained("/
|
190 |
|
191 |
def resize_img(input_image, max_side=640, min_side=512, size=None,
|
192 |
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
|
@@ -282,15 +282,15 @@ def tryon_process(garm_img, face_img, pose_img, prompt, cloth_guidance_scale, ca
|
|
282 |
num_inference_steps=denoise_steps,
|
283 |
).images
|
284 |
|
285 |
-
if if_post and if_ipa:
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
return output[0]
|
295 |
|
296 |
example_path = os.path.dirname(__file__)
|
@@ -396,4 +396,4 @@ with image_blocks as demo:
|
|
396 |
try_button.click(fn=tryon_process, inputs=[garm_img, imgs, pose_img, prompt, cloth_guidance_scale, caption_guidance_scale, face_guidance_scale,self_guidance_scale, cross_guidance_scale, is_checked_face, is_checked_postprocess, is_checked_pose, denoise_steps, seed],
|
397 |
outputs=[image_out], api_name='tryon')
|
398 |
|
399 |
-
image_blocks.launch(
|
|
|
46 |
parser.add_argument('--if_ipa', type=bool, default=True)
|
47 |
parser.add_argument('--if_control', type=bool, default=True)
|
48 |
|
49 |
+
# parser.add_argument('--pretrained_model_name_or_path',
|
50 |
+
# default="./ckpt/Realistic_Vision_V4.0_noVAE",
|
51 |
+
# type=str)
|
52 |
parser.add_argument('--ip_ckpt',
|
53 |
default="./ckpt/ip-adapter-faceid-plus_sd15.bin",
|
54 |
type=str)
|
|
|
86 |
unet = UNet2DConditionModel.from_pretrained("./ckpt/unet").to(
|
87 |
dtype=torch.float16,device=args.device)
|
88 |
|
89 |
+
# image_face_fusion = pipeline('face_fusion_torch', model='damo/cv_unet_face_fusion_torch', model_revision='v1.0.3')
|
90 |
|
91 |
#face_model
|
92 |
app = FaceAnalysis(providers=[('CUDAExecutionProvider', {"device_id": args.device})]) ##使用GPU:0, 默认使用buffalo_l就可以了
|
|
|
186 |
transforms.Normalize([0.5], [0.5]),
|
187 |
])
|
188 |
|
189 |
+
openpose_model = OpenposeDetector.from_pretrained("./ckpt/ControlNet").to(args.device)
|
190 |
|
191 |
def resize_img(input_image, max_side=640, min_side=512, size=None,
|
192 |
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
|
|
|
282 |
num_inference_steps=denoise_steps,
|
283 |
).images
|
284 |
|
285 |
+
# if if_post and if_ipa:
|
286 |
+
# # 将 PIL 图像转换为 NumPy 数组
|
287 |
+
# output_array = np.array(output[0])
|
288 |
+
# # 将 RGB 图像转换为 BGR 图像
|
289 |
+
# bgr_array = cv2.cvtColor(output_array, cv2.COLOR_RGB2BGR)
|
290 |
+
# # 将 NumPy 数组转换为 PIL 图像
|
291 |
+
# bgr_image = Image.fromarray(bgr_array)
|
292 |
+
# result = image_face_fusion(dict(template=bgr_image, user=Image.fromarray(face_image.astype('uint8'))))
|
293 |
+
# return result[OutputKeys.OUTPUT_IMG]
|
294 |
return output[0]
|
295 |
|
296 |
example_path = os.path.dirname(__file__)
|
|
|
396 |
try_button.click(fn=tryon_process, inputs=[garm_img, imgs, pose_img, prompt, cloth_guidance_scale, caption_guidance_scale, face_guidance_scale,self_guidance_scale, cross_guidance_scale, is_checked_face, is_checked_postprocess, is_checked_pose, denoise_steps, seed],
|
397 |
outputs=[image_out], api_name='tryon')
|
398 |
|
399 |
+
image_blocks.launch()
|