Spaces:
Build error
Build error
import numpy as np | |
# import librosa #has to do this cause librosa is not supported on my server | |
from scipy.io import wavfile | |
from scipy import signal | |
import librosa | |
import torch | |
import torchaudio as ta | |
import torchaudio.functional as ta_F | |
import torchaudio.transforms as ta_T | |
# import pyloudnorm as pyln | |
def load_wav_old(audio_fn, sr = 16000): | |
sample_rate, sig = wavfile.read(audio_fn) | |
if sample_rate != sr: | |
result = int((sig.shape[0]) / sample_rate * sr) | |
x_resampled = signal.resample(sig, result) | |
x_resampled = x_resampled.astype(np.float64) | |
return x_resampled, sr | |
sig = sig / (2**15) | |
return sig, sample_rate | |
def get_mfcc(audio_fn, eps=1e-6, fps=25, smlpx=False, sr=16000, n_mfcc=64, win_size=None): | |
y, sr = librosa.load(audio_fn, sr=sr, mono=True) | |
if win_size is None: | |
hop_len=int(sr / fps) | |
else: | |
hop_len=int(sr / win_size) | |
n_fft=2048 | |
C = librosa.feature.mfcc( | |
y = y, | |
sr = sr, | |
n_mfcc = n_mfcc, | |
hop_length = hop_len, | |
n_fft = n_fft | |
) | |
if C.shape[0] == n_mfcc: | |
C = C.transpose(1, 0) | |
return C | |
def get_melspec(audio_fn, eps=1e-6, fps = 25, sr=16000, n_mels=64): | |
raise NotImplementedError | |
''' | |
# y, sr = load_wav(audio_fn=audio_fn, sr=sr) | |
# hop_len = int(sr / fps) | |
# n_fft = 2048 | |
# C = librosa.feature.melspectrogram( | |
# y = y, | |
# sr = sr, | |
# n_fft=n_fft, | |
# hop_length=hop_len, | |
# n_mels = n_mels, | |
# fmin=0, | |
# fmax=8000) | |
# mask = (C == 0).astype(np.float) | |
# C = mask * eps + (1-mask) * C | |
# C = np.log(C) | |
# #wierd error may occur here | |
# assert not (np.isnan(C).any()), audio_fn | |
# if C.shape[0] == n_mels: | |
# C = C.transpose(1, 0) | |
# return C | |
''' | |
def extract_mfcc(audio,sample_rate=16000): | |
# mfcc = zip(*python_speech_features.mfcc(audio,sample_rate, numcep=64, nfilt=64, nfft=2048, winstep=0.04)) | |
# mfcc = np.stack([np.array(i) for i in mfcc]) | |
return None | |
def get_mfcc_psf(audio_fn, eps=1e-6, fps=25, smlpx=False, sr=16000, n_mfcc=64, win_size=None): | |
y, sr = load_wav_old(audio_fn, sr=sr) | |
if y.shape.__len__() > 1: | |
y = (y[:,0]+y[:,1])/2 | |
if win_size is None: | |
hop_len=int(sr / fps) | |
else: | |
hop_len=int(sr/ win_size) | |
n_fft=2048 | |
#hard coded for 25 fps | |
# if not smlpx: | |
# C = python_speech_features.mfcc(y, sr, numcep=n_mfcc, nfilt=n_mfcc, nfft=n_fft, winstep=0.04) | |
# else: | |
# C = python_speech_features.mfcc(y, sr, numcep=n_mfcc, nfilt=n_mfcc, nfft=n_fft, winstep=1.01/15) | |
# if C.shape[0] == n_mfcc: | |
# C = C.transpose(1, 0) | |
return None | |
def get_mfcc_psf_min(audio_fn, eps=1e-6, fps=25, smlpx=False, sr=16000, n_mfcc=64, win_size=None): | |
y, sr = load_wav_old(audio_fn, sr=sr) | |
if y.shape.__len__() > 1: | |
y = (y[:, 0] + y[:, 1]) / 2 | |
n_fft = 2048 | |
slice_len = 22000 * 5 | |
slice = y.size // slice_len | |
C = [] | |
# for i in range(slice): | |
# if i != (slice - 1): | |
# feat = python_speech_features.mfcc(y[i*slice_len:(i+1)*slice_len], sr, numcep=n_mfcc, nfilt=n_mfcc, nfft=n_fft, winstep=1.01 / 15) | |
# else: | |
# feat = python_speech_features.mfcc(y[i * slice_len:], sr, numcep=n_mfcc, nfilt=n_mfcc, nfft=n_fft, winstep=1.01 / 15) | |
# | |
# C.append(feat) | |
return C | |
def audio_chunking(audio: torch.Tensor, frame_rate: int = 30, chunk_size: int = 16000): | |
""" | |
:param audio: 1 x T tensor containing a 16kHz audio signal | |
:param frame_rate: frame rate for video (we need one audio chunk per video frame) | |
:param chunk_size: number of audio samples per chunk | |
:return: num_chunks x chunk_size tensor containing sliced audio | |
""" | |
samples_per_frame = chunk_size // frame_rate | |
padding = (chunk_size - samples_per_frame) // 2 | |
audio = torch.nn.functional.pad(audio.unsqueeze(0), pad=[padding, padding]).squeeze(0) | |
anchor_points = list(range(chunk_size//2, audio.shape[-1]-chunk_size//2, samples_per_frame)) | |
audio = torch.cat([audio[:, i-chunk_size//2:i+chunk_size//2] for i in anchor_points], dim=0) | |
return audio | |
def get_mfcc_ta(audio_fn, eps=1e-6, fps=15, smlpx=False, sr=16000, n_mfcc=64, win_size=None, type='mfcc', am=None, am_sr=None, encoder_choice='mfcc'): | |
if am is None: | |
sr_0, audio = audio_fn | |
audio = torch.tensor(audio)/32767 | |
if len(audio.shape) == 1: | |
audio.unsqueeze_(dim=0) | |
elif audio.shape[1] == 1 or audio.shape[1] == 2: | |
audio.transpose_(0, 1) | |
if sr != sr_0: | |
audio = ta.transforms.Resample(sr_0, sr)(audio) | |
if audio.shape[0] > 1: | |
audio = torch.mean(audio, dim=0, keepdim=True) | |
n_fft = 2048 | |
if fps == 15: | |
hop_length = 1467 | |
elif fps == 30: | |
hop_length = 734 | |
win_length = hop_length * 2 | |
n_mels = 256 | |
n_mfcc = 64 | |
if type == 'mfcc': | |
mfcc_transform = ta_T.MFCC( | |
sample_rate=sr, | |
n_mfcc=n_mfcc, | |
melkwargs={ | |
"n_fft": n_fft, | |
"n_mels": n_mels, | |
# "win_length": win_length, | |
"hop_length": hop_length, | |
"mel_scale": "htk", | |
}, | |
) | |
audio_ft = mfcc_transform(audio).squeeze(dim=0).transpose(0,1).numpy() | |
elif type == 'mel': | |
# audio = 0.01 * audio / torch.mean(torch.abs(audio)) | |
mel_transform = ta_T.MelSpectrogram( | |
sample_rate=sr, n_fft=n_fft, win_length=None, hop_length=hop_length, n_mels=n_mels | |
) | |
audio_ft = mel_transform(audio).squeeze(0).transpose(0,1).numpy() | |
# audio_ft = torch.log(audio_ft.clamp(min=1e-10, max=None)).transpose(0,1).numpy() | |
elif type == 'mel_mul': | |
audio = 0.01 * audio / torch.mean(torch.abs(audio)) | |
audio = audio_chunking(audio, frame_rate=fps, chunk_size=sr) | |
mel_transform = ta_T.MelSpectrogram( | |
sample_rate=sr, n_fft=n_fft, win_length=int(sr/20), hop_length=int(sr/100), n_mels=n_mels | |
) | |
audio_ft = mel_transform(audio).squeeze(1) | |
audio_ft = torch.log(audio_ft.clamp(min=1e-10, max=None)).numpy() | |
else: | |
sampling_rate, speech_array = audio_fn | |
speech_array = torch.tensor(speech_array) / 32767 | |
if len(speech_array.shape) == 1: | |
speech_array.unsqueeze_(0) | |
elif speech_array.shape[1] == 1 or speech_array.shape[1] == 2: | |
speech_array.transpose_(0, 1) | |
if sr != sampling_rate: | |
speech_array = ta.transforms.Resample(sampling_rate, sr)(speech_array) | |
speech_array = torch.mean(speech_array, dim=0, keepdim=True) | |
speech_array = speech_array.numpy() | |
if encoder_choice == 'faceformer': | |
# audio_ft = np.squeeze(am(speech_array, sampling_rate=16000).input_values).reshape(-1, 1) | |
audio_ft = speech_array.reshape(-1, 1) | |
elif encoder_choice == 'meshtalk': | |
audio_ft = 0.01 * speech_array / np.mean(np.abs(speech_array)) | |
elif encoder_choice == 'onset': | |
audio_ft = librosa.onset.onset_detect(y=speech_array, sr=16000, units='time').reshape(-1, 1) | |
else: | |
audio, sr_0 = ta.load(audio_fn) | |
if sr != sr_0: | |
audio = ta.transforms.Resample(sr_0, sr)(audio) | |
if audio.shape[0] > 1: | |
audio = torch.mean(audio, dim=0, keepdim=True) | |
n_fft = 2048 | |
if fps == 15: | |
hop_length = 1467 | |
elif fps == 30: | |
hop_length = 734 | |
win_length = hop_length * 2 | |
n_mels = 256 | |
n_mfcc = 64 | |
mfcc_transform = ta_T.MFCC( | |
sample_rate=sr, | |
n_mfcc=n_mfcc, | |
melkwargs={ | |
"n_fft": n_fft, | |
"n_mels": n_mels, | |
# "win_length": win_length, | |
"hop_length": hop_length, | |
"mel_scale": "htk", | |
}, | |
) | |
audio_ft = mfcc_transform(audio).squeeze(dim=0).transpose(0, 1).numpy() | |
return audio_ft | |
def get_mfcc_sepa(audio_fn, fps=15, sr=16000): | |
audio, sr_0 = ta.load(audio_fn) | |
if sr != sr_0: | |
audio = ta.transforms.Resample(sr_0, sr)(audio) | |
if audio.shape[0] > 1: | |
audio = torch.mean(audio, dim=0, keepdim=True) | |
n_fft = 2048 | |
if fps == 15: | |
hop_length = 1467 | |
elif fps == 30: | |
hop_length = 734 | |
n_mels = 256 | |
n_mfcc = 64 | |
mfcc_transform = ta_T.MFCC( | |
sample_rate=sr, | |
n_mfcc=n_mfcc, | |
melkwargs={ | |
"n_fft": n_fft, | |
"n_mels": n_mels, | |
# "win_length": win_length, | |
"hop_length": hop_length, | |
"mel_scale": "htk", | |
}, | |
) | |
audio_ft_0 = mfcc_transform(audio[0, :sr*2]).squeeze(dim=0).transpose(0,1).numpy() | |
audio_ft_1 = mfcc_transform(audio[0, sr*2:]).squeeze(dim=0).transpose(0,1).numpy() | |
audio_ft = np.concatenate((audio_ft_0, audio_ft_1), axis=0) | |
return audio_ft, audio_ft_0.shape[0] | |
def get_mfcc_old(wav_file): | |
sig, sample_rate = load_wav_old(wav_file) | |
mfcc = extract_mfcc(sig) | |
return mfcc | |
def smooth_geom(geom, mask: torch.Tensor = None, filter_size: int = 9, sigma: float = 2.0): | |
""" | |
:param geom: T x V x 3 tensor containing a temporal sequence of length T with V vertices in each frame | |
:param mask: V-dimensional Tensor containing a mask with vertices to be smoothed | |
:param filter_size: size of the Gaussian filter | |
:param sigma: standard deviation of the Gaussian filter | |
:return: T x V x 3 tensor containing smoothed geometry (i.e., smoothed in the area indicated by the mask) | |
""" | |
assert filter_size % 2 == 1, f"filter size must be odd but is {filter_size}" | |
# Gaussian smoothing (low-pass filtering) | |
fltr = np.arange(-(filter_size // 2), filter_size // 2 + 1) | |
fltr = np.exp(-0.5 * fltr ** 2 / sigma ** 2) | |
fltr = torch.Tensor(fltr) / np.sum(fltr) | |
# apply fltr | |
fltr = fltr.view(1, 1, -1).to(device=geom.device) | |
T, V = geom.shape[1], geom.shape[2] | |
g = torch.nn.functional.pad( | |
geom.permute(2, 0, 1).view(V, 1, T), | |
pad=[filter_size // 2, filter_size // 2], mode='replicate' | |
) | |
g = torch.nn.functional.conv1d(g, fltr).view(V, 1, T) | |
smoothed = g.permute(1, 2, 0).contiguous() | |
# blend smoothed signal with original signal | |
if mask is None: | |
return smoothed | |
else: | |
return smoothed * mask[None, :, None] + geom * (-mask[None, :, None] + 1) |