Spaces:
Runtime error
Runtime error
charts tab (#4)
Browse files- Charts tab (23d584235f198c05736cc6a60f24ba99165d8a96)
app.py
CHANGED
@@ -9,6 +9,11 @@ from langchain.embeddings import OpenAIEmbeddings
|
|
9 |
from langchain.vectorstores import Chroma
|
10 |
from langchain.chains import ConversationalRetrievalChain
|
11 |
from langchain import PromptTemplate
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
# _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.
|
@@ -28,6 +33,26 @@ from langchain import PromptTemplate
|
|
28 |
# =========
|
29 |
# Answer in Markdown:"""
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
def loading_pdf():
|
32 |
return "Loading..."
|
33 |
|
@@ -169,11 +194,10 @@ def respond(message, chat_history):
|
|
169 |
return "", chat_history
|
170 |
|
171 |
|
172 |
-
|
173 |
with gr.Blocks() as demo:
|
174 |
with gr.Column(elem_id="col-container"):
|
175 |
gr.HTML(title)
|
176 |
-
|
177 |
show_label=False,
|
178 |
placeholder="Your OpenAI key",
|
179 |
type = 'password',
|
@@ -209,7 +233,7 @@ with gr.Blocks() as demo:
|
|
209 |
clr_btn = gr.Button("Clear!")
|
210 |
|
211 |
load_pdf.click(loading_pdf, None, langchain_status, queue=False)
|
212 |
-
load_pdf.click(pdf_changes, inputs=[pdf_doc,
|
213 |
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
|
214 |
bot, chatbot, chatbot
|
215 |
)
|
@@ -244,16 +268,20 @@ with gr.Blocks() as demo:
|
|
244 |
clr_btn = gr.Button("Clear!")
|
245 |
|
246 |
load_table.click(load_file, None, status_sh, queue=False)
|
247 |
-
load_table.click(table_loader, inputs=[raw_table,
|
248 |
|
249 |
question_sh.submit(respond, [question_sh, chatbot_sh], [question_sh, chatbot_sh])
|
250 |
clr_btn.click(lambda: None, None, chatbot_sh, queue=False)
|
251 |
|
252 |
-
|
253 |
with gr.Tab("Charts"):
|
254 |
-
|
255 |
-
|
256 |
-
|
|
|
|
|
|
|
|
|
257 |
|
258 |
demo.queue(concurrency_count=3)
|
259 |
demo.launch()
|
|
|
9 |
from langchain.vectorstores import Chroma
|
10 |
from langchain.chains import ConversationalRetrievalChain
|
11 |
from langchain import PromptTemplate
|
12 |
+
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
|
13 |
+
import requests
|
14 |
+
from PIL import Image
|
15 |
+
import torch
|
16 |
+
|
17 |
|
18 |
|
19 |
# _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.
|
|
|
33 |
# =========
|
34 |
# Answer in Markdown:"""
|
35 |
|
36 |
+
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/20294671002019.png', 'chart_example.png')
|
37 |
+
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/multi_col_1081.png', 'chart_example_2.png')
|
38 |
+
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/18143564004789.png', 'chart_example_3.png')
|
39 |
+
torch.hub.download_url_to_file('https://sharkcoder.com/files/article/matplotlib-bar-plot.png', 'chart_example_4.png')
|
40 |
+
|
41 |
+
|
42 |
+
model_name = "google/matcha-chartqa"
|
43 |
+
model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
|
44 |
+
processor = Pix2StructProcessor.from_pretrained(model_name)
|
45 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
46 |
+
model.to(device)
|
47 |
+
|
48 |
+
def filter_output(output):
|
49 |
+
return output.replace("<0x0A>", "")
|
50 |
+
|
51 |
+
def chart_qa(image, question):
|
52 |
+
inputs = processor(images=image, text=question, return_tensors="pt").to(device)
|
53 |
+
predictions = model.generate(**inputs, max_new_tokens=512)
|
54 |
+
return filter_output(processor.decode(predictions[0], skip_special_tokens=True))
|
55 |
+
|
56 |
def loading_pdf():
|
57 |
return "Loading..."
|
58 |
|
|
|
194 |
return "", chat_history
|
195 |
|
196 |
|
|
|
197 |
with gr.Blocks() as demo:
|
198 |
with gr.Column(elem_id="col-container"):
|
199 |
gr.HTML(title)
|
200 |
+
key = gr.Textbox(
|
201 |
show_label=False,
|
202 |
placeholder="Your OpenAI key",
|
203 |
type = 'password',
|
|
|
233 |
clr_btn = gr.Button("Clear!")
|
234 |
|
235 |
load_pdf.click(loading_pdf, None, langchain_status, queue=False)
|
236 |
+
load_pdf.click(pdf_changes, inputs=[pdf_doc, key], outputs=[langchain_status], queue=True)
|
237 |
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
|
238 |
bot, chatbot, chatbot
|
239 |
)
|
|
|
268 |
clr_btn = gr.Button("Clear!")
|
269 |
|
270 |
load_table.click(load_file, None, status_sh, queue=False)
|
271 |
+
load_table.click(table_loader, inputs=[raw_table, key], outputs=[status_sh], queue=False)
|
272 |
|
273 |
question_sh.submit(respond, [question_sh, chatbot_sh], [question_sh, chatbot_sh])
|
274 |
clr_btn.click(lambda: None, None, chatbot_sh, queue=False)
|
275 |
|
276 |
+
|
277 |
with gr.Tab("Charts"):
|
278 |
+
image = gr.Image(type="pil", label="Chart")
|
279 |
+
question = gr.Textbox(label="Question")
|
280 |
+
load_chart = gr.Button("Load chart and question!")
|
281 |
+
answer = gr.Textbox(label="Model Output")
|
282 |
+
|
283 |
+
load_chart.click(chart_qa, [image, question], answer)
|
284 |
+
|
285 |
|
286 |
demo.queue(concurrency_count=3)
|
287 |
demo.launch()
|