Spaces:
Runtime error
Runtime error
import langchain | |
from langchain.agents import create_csv_agent | |
from langchain.schema import HumanMessage | |
from langchain.chat_models import ChatOpenAI | |
from langchain.embeddings import OpenAIEmbeddings | |
from langchain.vectorstores import Chroma | |
from typing import List, Dict | |
from langchain.agents import AgentType | |
from langchain.chains.conversation.memory import ConversationBufferWindowMemory | |
from utils.functions import Matcha_model | |
from PIL import Image | |
from pathlib import Path | |
from langchain.tools import StructuredTool | |
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings | |
class Bot: | |
def __init__( | |
self, | |
openai_api_key: str, | |
file_descriptions: List[Dict[str, any]], | |
text_documents: List[langchain.schema.Document], | |
verbose: bool = False | |
): | |
self.verbose = verbose | |
self.file_descriptions = file_descriptions | |
self.llm = ChatOpenAI( | |
openai_api_key=openai_api_key, | |
temperature=0, | |
model_name="gpt-3.5-turbo" | |
) | |
embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") | |
# embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) | |
vector_store = Chroma.from_documents(text_documents, embedding_function) | |
self.text_retriever = langchain.chains.RetrievalQAWithSourcesChain.from_chain_type( | |
llm=self.llm, | |
chain_type='stuff', | |
retriever=vector_store.as_retriever() | |
) | |
self.text_search_tool = langchain.agents.Tool( | |
func=self._text_search, | |
description="Use this tool when searching for text information", | |
name="search text information" | |
) | |
self.chart_model = Matcha_model() | |
def __call__( | |
self, | |
question: str | |
): | |
self.tools = [] | |
self.tools.append(self.text_search_tool) | |
file = self._define_appropriate_file(question) | |
if file != "None of the files": | |
number = int(file[file.find('№')+1:]) | |
file_description = [x for x in self.file_descriptions if x['number'] == number][0] | |
file_path = file_description['path'] | |
if Path(file).suffix == '.csv': | |
self.csv_agent = create_csv_agent( | |
llm=self.llm, | |
path=file_path, | |
verbose=self.verbose | |
) | |
self._init_tabular_search_tool(file_description) | |
self.tools.append(self.tabular_search_tool) | |
else: | |
self._init_chart_search_tool(file_description) | |
self.tools.append(self.chart_search_tool) | |
self._init_chatbot() | |
# print(file) | |
response = self.agent(question) | |
return response | |
def _init_chatbot(self): | |
conversational_memory = ConversationBufferWindowMemory( | |
memory_key='chat_history', | |
k=5, | |
return_messages=True | |
) | |
self.agent = langchain.agents.initialize_agent( | |
agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, | |
tools=self.tools, | |
llm=self.llm, | |
verbose=self.verbose, | |
max_iterations=5, | |
early_stopping_method='generate', | |
memory=conversational_memory | |
) | |
sys_msg = ( | |
"You are an expert summarizer and deliverer of information. " | |
"Yet, the reason you are so intelligent is that you make complex " | |
"information incredibly simple to understand. It's actually rather incredible." | |
"When users ask information you refer to the relevant tools." | |
"if one of the tools helped you with only a part of the necessary information, you must " | |
"try to find the missing information using another tool" | |
"if you can't find the information using the provided tools, you MUST " | |
"say 'I don't know'. Don't try to make up an answer." | |
) | |
prompt = self.agent.agent.create_prompt( | |
tools=self.tools, | |
prefix = sys_msg | |
) | |
self.agent.agent.llm_chain.prompt = prompt | |
def _text_search( | |
self, | |
query: str | |
) -> str: | |
query = self.text_retriever.prep_inputs(query) | |
res = self.text_retriever(query)['answer'] | |
return res | |
def _tabular_search( | |
self, | |
query: str | |
) -> str: | |
res = self.csv_agent.run(query) | |
return res | |
def _chart_search( | |
self, | |
image, | |
query: str | |
) -> str: | |
image = Image.open(image) | |
res = self.chart_model.chart_qa(image, query) | |
return res | |
def _init_chart_search_tool( | |
self, | |
title: str | |
) -> None: | |
title = title | |
description = f""" | |
Use this tool when searching for information on charts. | |
With this tool you can answer the question about related chart. | |
You should ask simple question about a chart, then the tool will give you number. | |
This chart is called {title}. | |
""" | |
self.chart_search_tool = StructuredTool( | |
func=self._chart_search, | |
description=description, | |
name="Ask over charts" | |
) | |
def _init_tabular_search_tool( | |
self, | |
file_: Dict[str, any] | |
) -> None: | |
description = f""" | |
Use this tool when searching for tabular information. | |
With this tool you could get access to table. | |
This table title is "{title}" and the names of the columns in this table: {columns} | |
""" | |
self.tabular_search_tool = langchain.agents.Tool( | |
func=self._tabular_search, | |
description=description, | |
name="search tabular information" | |
) | |
def _define_appropriate_file( | |
self, | |
question: str | |
) -> str: | |
''' Определяет по описаниям таблиц в какой из них может содержаться ответ на вопрос. | |
Возвращает номер таблицы по шаблону "Table №1" или "None of the tables" ''' | |
message = 'I have list of descriptions: \n' | |
k = 0 | |
for description in self.file_descriptions: | |
k += 1 | |
str_description = f""" {k}) description for File №{description['number']}: """ | |
for key, value in description.items(): | |
string_val = str(key) + ' : ' + str(value) + '\n' | |
str_description += string_val | |
message += str_description | |
print(message) | |
question = f""" How do you think, which file can help answer the question: "{question}" . | |
Your answer MUST be specific, | |
for example if you think that File №2 can help answer the question, you MUST just write "File №2!". | |
If you think that none of the files can help answer the question just write "None of the files!" | |
Don't include to answer information about your thinking. | |
""" | |
message += question | |
res = self.llm([HumanMessage(content=message)]) | |
print(res.content) | |
print(res.content[:-1]) | |
return res.content[:-1] | |