:sparkles: adding meta-llama/Llama-3.3-70B-Instruct
Browse files- README.md +1 -0
- app.py +5 -2
- readme-generator/generate.sh +2 -0
README.md
CHANGED
@@ -2034,6 +2034,7 @@ models:
|
|
2034 |
- Qwen/Qwen2.5-72B
|
2035 |
- nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
|
2036 |
- Qwen/QwQ-32B-Preview
|
|
|
2037 |
---
|
2038 |
|
2039 |
# Overview
|
|
|
2034 |
- Qwen/Qwen2.5-72B
|
2035 |
- nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
|
2036 |
- Qwen/QwQ-32B-Preview
|
2037 |
+
- meta-llama/Llama-3.3-70B-Instruct
|
2038 |
---
|
2039 |
|
2040 |
# Overview
|
app.py
CHANGED
@@ -41,13 +41,16 @@ model_class_filter = {
|
|
41 |
REFLECTION="mattshumer/Reflection-Llama-3.1-70B"
|
42 |
QWEN25_72B="Qwen/Qwen2.5-72B"
|
43 |
NEMOTRON="nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
|
|
|
44 |
bigger_whitelisted_models = [
|
45 |
QWEN25_72B,
|
46 |
-
NEMOTRON
|
|
|
47 |
]
|
48 |
# REFLECTION is in backup hosting
|
49 |
model_class_from_model_id[REFLECTION] = 'llama31-70b-16k'
|
50 |
model_class_from_model_id[NEMOTRON] = 'llama31-70b-16k'
|
|
|
51 |
def build_model_choices():
|
52 |
all_choices = []
|
53 |
for model_class in model_cache:
|
@@ -74,7 +77,7 @@ def model_in_list(model):
|
|
74 |
key=os.environ.get('RANDOM_SEED', 'kcOtfNHA+e')
|
75 |
o = random.Random(f"{key}-{datetime.date.today().strftime('%Y-%m-%d')}")
|
76 |
initial_model = o.choice(model_choices)[1]
|
77 |
-
initial_model =
|
78 |
# this doesn't work in HF spaces because we're iframed :(
|
79 |
# def initial_model(referer=None):
|
80 |
# return REFLECTION
|
|
|
41 |
REFLECTION="mattshumer/Reflection-Llama-3.1-70B"
|
42 |
QWEN25_72B="Qwen/Qwen2.5-72B"
|
43 |
NEMOTRON="nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
|
44 |
+
LLAMA3="meta-llama/Llama-3.3-70B-Instruct"
|
45 |
bigger_whitelisted_models = [
|
46 |
QWEN25_72B,
|
47 |
+
NEMOTRON,
|
48 |
+
LLAMA3
|
49 |
]
|
50 |
# REFLECTION is in backup hosting
|
51 |
model_class_from_model_id[REFLECTION] = 'llama31-70b-16k'
|
52 |
model_class_from_model_id[NEMOTRON] = 'llama31-70b-16k'
|
53 |
+
model_class_from_model_id[LLAMA3] = 'llama31-70b-16k'
|
54 |
def build_model_choices():
|
55 |
all_choices = []
|
56 |
for model_class in model_cache:
|
|
|
77 |
key=os.environ.get('RANDOM_SEED', 'kcOtfNHA+e')
|
78 |
o = random.Random(f"{key}-{datetime.date.today().strftime('%Y-%m-%d')}")
|
79 |
initial_model = o.choice(model_choices)[1]
|
80 |
+
initial_model = LLAMA3
|
81 |
# this doesn't work in HF spaces because we're iframed :(
|
82 |
# def initial_model(referer=None):
|
83 |
# return REFLECTION
|
readme-generator/generate.sh
CHANGED
@@ -21,6 +21,8 @@ $(cat ../model-cache.json \
|
|
21 |
)
|
22 |
- Qwen/Qwen2.5-72B
|
23 |
- nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
|
|
|
|
|
24 |
---
|
25 |
|
26 |
$(cat body.md)
|
|
|
21 |
)
|
22 |
- Qwen/Qwen2.5-72B
|
23 |
- nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
|
24 |
+
- Qwen/QwQ-32B-Preview
|
25 |
+
- meta-llama/Llama-3.3-70B-Instruct
|
26 |
---
|
27 |
|
28 |
$(cat body.md)
|