Soccer-2024-VTON / detectron2 /data /datasets /cityscapes_panoptic.py
IDM-VTON
update IDM-VTON Demo
938e515
raw
history blame
7.82 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import json
import logging
import os
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.data.datasets.builtin_meta import CITYSCAPES_CATEGORIES
from detectron2.utils.file_io import PathManager
"""
This file contains functions to register the Cityscapes panoptic dataset to the DatasetCatalog.
"""
logger = logging.getLogger(__name__)
def get_cityscapes_panoptic_files(image_dir, gt_dir, json_info):
files = []
# scan through the directory
cities = PathManager.ls(image_dir)
logger.info(f"{len(cities)} cities found in '{image_dir}'.")
image_dict = {}
for city in cities:
city_img_dir = os.path.join(image_dir, city)
for basename in PathManager.ls(city_img_dir):
image_file = os.path.join(city_img_dir, basename)
suffix = "_leftImg8bit.png"
assert basename.endswith(suffix), basename
basename = os.path.basename(basename)[: -len(suffix)]
image_dict[basename] = image_file
for ann in json_info["annotations"]:
image_file = image_dict.get(ann["image_id"], None)
assert image_file is not None, "No image {} found for annotation {}".format(
ann["image_id"], ann["file_name"]
)
label_file = os.path.join(gt_dir, ann["file_name"])
segments_info = ann["segments_info"]
files.append((image_file, label_file, segments_info))
assert len(files), "No images found in {}".format(image_dir)
assert PathManager.isfile(files[0][0]), files[0][0]
assert PathManager.isfile(files[0][1]), files[0][1]
return files
def load_cityscapes_panoptic(image_dir, gt_dir, gt_json, meta):
"""
Args:
image_dir (str): path to the raw dataset. e.g., "~/cityscapes/leftImg8bit/train".
gt_dir (str): path to the raw annotations. e.g.,
"~/cityscapes/gtFine/cityscapes_panoptic_train".
gt_json (str): path to the json file. e.g.,
"~/cityscapes/gtFine/cityscapes_panoptic_train.json".
meta (dict): dictionary containing "thing_dataset_id_to_contiguous_id"
and "stuff_dataset_id_to_contiguous_id" to map category ids to
contiguous ids for training.
Returns:
list[dict]: a list of dicts in Detectron2 standard format. (See
`Using Custom Datasets </tutorials/datasets.html>`_ )
"""
def _convert_category_id(segment_info, meta):
if segment_info["category_id"] in meta["thing_dataset_id_to_contiguous_id"]:
segment_info["category_id"] = meta["thing_dataset_id_to_contiguous_id"][
segment_info["category_id"]
]
else:
segment_info["category_id"] = meta["stuff_dataset_id_to_contiguous_id"][
segment_info["category_id"]
]
return segment_info
assert os.path.exists(
gt_json
), "Please run `python cityscapesscripts/preparation/createPanopticImgs.py` to generate label files." # noqa
with open(gt_json) as f:
json_info = json.load(f)
files = get_cityscapes_panoptic_files(image_dir, gt_dir, json_info)
ret = []
for image_file, label_file, segments_info in files:
sem_label_file = (
image_file.replace("leftImg8bit", "gtFine").split(".")[0] + "_labelTrainIds.png"
)
segments_info = [_convert_category_id(x, meta) for x in segments_info]
ret.append(
{
"file_name": image_file,
"image_id": "_".join(
os.path.splitext(os.path.basename(image_file))[0].split("_")[:3]
),
"sem_seg_file_name": sem_label_file,
"pan_seg_file_name": label_file,
"segments_info": segments_info,
}
)
assert len(ret), f"No images found in {image_dir}!"
assert PathManager.isfile(
ret[0]["sem_seg_file_name"]
), "Please generate labelTrainIds.png with cityscapesscripts/preparation/createTrainIdLabelImgs.py" # noqa
assert PathManager.isfile(
ret[0]["pan_seg_file_name"]
), "Please generate panoptic annotation with python cityscapesscripts/preparation/createPanopticImgs.py" # noqa
return ret
_RAW_CITYSCAPES_PANOPTIC_SPLITS = {
"cityscapes_fine_panoptic_train": (
"cityscapes/leftImg8bit/train",
"cityscapes/gtFine/cityscapes_panoptic_train",
"cityscapes/gtFine/cityscapes_panoptic_train.json",
),
"cityscapes_fine_panoptic_val": (
"cityscapes/leftImg8bit/val",
"cityscapes/gtFine/cityscapes_panoptic_val",
"cityscapes/gtFine/cityscapes_panoptic_val.json",
),
# "cityscapes_fine_panoptic_test": not supported yet
}
def register_all_cityscapes_panoptic(root):
meta = {}
# The following metadata maps contiguous id from [0, #thing categories +
# #stuff categories) to their names and colors. We have to replica of the
# same name and color under "thing_*" and "stuff_*" because the current
# visualization function in D2 handles thing and class classes differently
# due to some heuristic used in Panoptic FPN. We keep the same naming to
# enable reusing existing visualization functions.
thing_classes = [k["name"] for k in CITYSCAPES_CATEGORIES]
thing_colors = [k["color"] for k in CITYSCAPES_CATEGORIES]
stuff_classes = [k["name"] for k in CITYSCAPES_CATEGORIES]
stuff_colors = [k["color"] for k in CITYSCAPES_CATEGORIES]
meta["thing_classes"] = thing_classes
meta["thing_colors"] = thing_colors
meta["stuff_classes"] = stuff_classes
meta["stuff_colors"] = stuff_colors
# There are three types of ids in cityscapes panoptic segmentation:
# (1) category id: like semantic segmentation, it is the class id for each
# pixel. Since there are some classes not used in evaluation, the category
# id is not always contiguous and thus we have two set of category ids:
# - original category id: category id in the original dataset, mainly
# used for evaluation.
# - contiguous category id: [0, #classes), in order to train the classifier
# (2) instance id: this id is used to differentiate different instances from
# the same category. For "stuff" classes, the instance id is always 0; for
# "thing" classes, the instance id starts from 1 and 0 is reserved for
# ignored instances (e.g. crowd annotation).
# (3) panoptic id: this is the compact id that encode both category and
# instance id by: category_id * 1000 + instance_id.
thing_dataset_id_to_contiguous_id = {}
stuff_dataset_id_to_contiguous_id = {}
for k in CITYSCAPES_CATEGORIES:
if k["isthing"] == 1:
thing_dataset_id_to_contiguous_id[k["id"]] = k["trainId"]
else:
stuff_dataset_id_to_contiguous_id[k["id"]] = k["trainId"]
meta["thing_dataset_id_to_contiguous_id"] = thing_dataset_id_to_contiguous_id
meta["stuff_dataset_id_to_contiguous_id"] = stuff_dataset_id_to_contiguous_id
for key, (image_dir, gt_dir, gt_json) in _RAW_CITYSCAPES_PANOPTIC_SPLITS.items():
image_dir = os.path.join(root, image_dir)
gt_dir = os.path.join(root, gt_dir)
gt_json = os.path.join(root, gt_json)
DatasetCatalog.register(
key, lambda x=image_dir, y=gt_dir, z=gt_json: load_cityscapes_panoptic(x, y, z, meta)
)
MetadataCatalog.get(key).set(
panoptic_root=gt_dir,
image_root=image_dir,
panoptic_json=gt_json,
gt_dir=gt_dir.replace("cityscapes_panoptic_", ""),
evaluator_type="cityscapes_panoptic_seg",
ignore_label=255,
label_divisor=1000,
**meta,
)