Spaces:
Runtime error
Runtime error
Soccer-2024-VTON
/
preprocess
/humanparsing
/mhp_extension
/detectron2
/tests
/modeling
/test_rpn.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
import logging | |
import unittest | |
import torch | |
from detectron2.config import get_cfg | |
from detectron2.modeling.backbone import build_backbone | |
from detectron2.modeling.proposal_generator.build import build_proposal_generator | |
from detectron2.modeling.proposal_generator.rpn_outputs import find_top_rpn_proposals | |
from detectron2.structures import Boxes, ImageList, Instances, RotatedBoxes | |
from detectron2.utils.events import EventStorage | |
logger = logging.getLogger(__name__) | |
class RPNTest(unittest.TestCase): | |
def test_rpn(self): | |
torch.manual_seed(121) | |
cfg = get_cfg() | |
cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RPN" | |
cfg.MODEL.ANCHOR_GENERATOR.NAME = "DefaultAnchorGenerator" | |
cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1) | |
backbone = build_backbone(cfg) | |
proposal_generator = build_proposal_generator(cfg, backbone.output_shape()) | |
num_images = 2 | |
images_tensor = torch.rand(num_images, 20, 30) | |
image_sizes = [(10, 10), (20, 30)] | |
images = ImageList(images_tensor, image_sizes) | |
image_shape = (15, 15) | |
num_channels = 1024 | |
features = {"res4": torch.rand(num_images, num_channels, 1, 2)} | |
gt_boxes = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]], dtype=torch.float32) | |
gt_instances = Instances(image_shape) | |
gt_instances.gt_boxes = Boxes(gt_boxes) | |
with EventStorage(): # capture events in a new storage to discard them | |
proposals, proposal_losses = proposal_generator( | |
images, features, [gt_instances[0], gt_instances[1]] | |
) | |
expected_losses = { | |
"loss_rpn_cls": torch.tensor(0.0804563984), | |
"loss_rpn_loc": torch.tensor(0.0990132466), | |
} | |
for name in expected_losses.keys(): | |
err_msg = "proposal_losses[{}] = {}, expected losses = {}".format( | |
name, proposal_losses[name], expected_losses[name] | |
) | |
self.assertTrue(torch.allclose(proposal_losses[name], expected_losses[name]), err_msg) | |
expected_proposal_boxes = [ | |
Boxes(torch.tensor([[0, 0, 10, 10], [7.3365392685, 0, 10, 10]])), | |
Boxes( | |
torch.tensor( | |
[ | |
[0, 0, 30, 20], | |
[0, 0, 16.7862777710, 13.1362524033], | |
[0, 0, 30, 13.3173446655], | |
[0, 0, 10.8602609634, 20], | |
[7.7165775299, 0, 27.3875980377, 20], | |
] | |
) | |
), | |
] | |
expected_objectness_logits = [ | |
torch.tensor([0.1225359365, -0.0133192837]), | |
torch.tensor([0.1415634006, 0.0989848152, 0.0565387346, -0.0072308783, -0.0428492837]), | |
] | |
for proposal, expected_proposal_box, im_size, expected_objectness_logit in zip( | |
proposals, expected_proposal_boxes, image_sizes, expected_objectness_logits | |
): | |
self.assertEqual(len(proposal), len(expected_proposal_box)) | |
self.assertEqual(proposal.image_size, im_size) | |
self.assertTrue( | |
torch.allclose(proposal.proposal_boxes.tensor, expected_proposal_box.tensor) | |
) | |
self.assertTrue(torch.allclose(proposal.objectness_logits, expected_objectness_logit)) | |
def test_rrpn(self): | |
torch.manual_seed(121) | |
cfg = get_cfg() | |
cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RRPN" | |
cfg.MODEL.ANCHOR_GENERATOR.NAME = "RotatedAnchorGenerator" | |
cfg.MODEL.ANCHOR_GENERATOR.SIZES = [[32, 64]] | |
cfg.MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS = [[0.25, 1]] | |
cfg.MODEL.ANCHOR_GENERATOR.ANGLES = [[0, 60]] | |
cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1, 1) | |
cfg.MODEL.RPN.HEAD_NAME = "StandardRPNHead" | |
backbone = build_backbone(cfg) | |
proposal_generator = build_proposal_generator(cfg, backbone.output_shape()) | |
num_images = 2 | |
images_tensor = torch.rand(num_images, 20, 30) | |
image_sizes = [(10, 10), (20, 30)] | |
images = ImageList(images_tensor, image_sizes) | |
image_shape = (15, 15) | |
num_channels = 1024 | |
features = {"res4": torch.rand(num_images, num_channels, 1, 2)} | |
gt_boxes = torch.tensor([[2, 2, 2, 2, 0], [4, 4, 4, 4, 0]], dtype=torch.float32) | |
gt_instances = Instances(image_shape) | |
gt_instances.gt_boxes = RotatedBoxes(gt_boxes) | |
with EventStorage(): # capture events in a new storage to discard them | |
proposals, proposal_losses = proposal_generator( | |
images, features, [gt_instances[0], gt_instances[1]] | |
) | |
expected_losses = { | |
"loss_rpn_cls": torch.tensor(0.043263837695121765), | |
"loss_rpn_loc": torch.tensor(0.14432406425476074), | |
} | |
for name in expected_losses.keys(): | |
err_msg = "proposal_losses[{}] = {}, expected losses = {}".format( | |
name, proposal_losses[name], expected_losses[name] | |
) | |
self.assertTrue(torch.allclose(proposal_losses[name], expected_losses[name]), err_msg) | |
expected_proposal_boxes = [ | |
RotatedBoxes( | |
torch.tensor( | |
[ | |
[0.60189795, 1.24095452, 61.98131943, 18.03621292, -4.07244873], | |
[15.64940453, 1.69624567, 59.59749603, 16.34339333, 2.62692475], | |
[-3.02982378, -2.69752932, 67.90952301, 59.62455750, 59.97010040], | |
[16.71863365, 1.98309708, 35.61507797, 32.81484985, 62.92267227], | |
[0.49432933, -7.92979717, 67.77606201, 62.93098450, -1.85656738], | |
[8.00880814, 1.36017394, 121.81007385, 32.74150467, 50.44297409], | |
[16.44299889, -4.82221127, 63.39775848, 61.22503662, 54.12270737], | |
[5.00000000, 5.00000000, 10.00000000, 10.00000000, -0.76943970], | |
[17.64130402, -0.98095351, 61.40377808, 16.28918839, 55.53118134], | |
[0.13016054, 4.60568953, 35.80157471, 32.30180359, 62.52872086], | |
[-4.26460743, 0.39604485, 124.30079651, 31.84611320, -1.58203125], | |
[7.52815342, -0.91636634, 62.39784622, 15.45565224, 60.79549789], | |
] | |
) | |
), | |
RotatedBoxes( | |
torch.tensor( | |
[ | |
[0.07734215, 0.81635046, 65.33510590, 17.34688377, -1.51821899], | |
[-3.41833067, -3.11320257, 64.17595673, 60.55617905, 58.27033234], | |
[20.67383385, -6.16561556, 63.60531998, 62.52315903, 54.85546494], | |
[15.00000000, 10.00000000, 30.00000000, 20.00000000, -0.18218994], | |
[9.22646523, -6.84775209, 62.09895706, 65.46472931, -2.74307251], | |
[15.00000000, 4.93451595, 30.00000000, 9.86903191, -0.60272217], | |
[8.88342094, 2.65560246, 120.95362854, 32.45022202, 55.75970078], | |
[16.39088631, 2.33887148, 34.78761292, 35.61492920, 60.81977463], | |
[9.78298569, 10.00000000, 19.56597137, 20.00000000, -0.86660767], | |
[1.28576660, 5.49873352, 34.93610382, 33.22600174, 60.51599884], | |
[17.58912468, -1.63270092, 62.96052551, 16.45713997, 52.91245270], | |
[5.64749718, -1.90428460, 62.37649155, 16.19474792, 61.09543991], | |
[0.82255805, 2.34931135, 118.83985901, 32.83671188, 56.50753784], | |
[-5.33874989, 1.64404404, 125.28501892, 33.35424042, -2.80731201], | |
] | |
) | |
), | |
] | |
expected_objectness_logits = [ | |
torch.tensor( | |
[ | |
0.10111768, | |
0.09112845, | |
0.08466332, | |
0.07589971, | |
0.06650183, | |
0.06350251, | |
0.04299347, | |
0.01864817, | |
0.00986163, | |
0.00078543, | |
-0.04573630, | |
-0.04799230, | |
] | |
), | |
torch.tensor( | |
[ | |
0.11373727, | |
0.09377633, | |
0.05281663, | |
0.05143715, | |
0.04040275, | |
0.03250912, | |
0.01307789, | |
0.01177734, | |
0.00038105, | |
-0.00540255, | |
-0.01194804, | |
-0.01461012, | |
-0.03061717, | |
-0.03599222, | |
] | |
), | |
] | |
torch.set_printoptions(precision=8, sci_mode=False) | |
for proposal, expected_proposal_box, im_size, expected_objectness_logit in zip( | |
proposals, expected_proposal_boxes, image_sizes, expected_objectness_logits | |
): | |
self.assertEqual(len(proposal), len(expected_proposal_box)) | |
self.assertEqual(proposal.image_size, im_size) | |
# It seems that there's some randomness in the result across different machines: | |
# This test can be run on a local machine for 100 times with exactly the same result, | |
# However, a different machine might produce slightly different results, | |
# thus the atol here. | |
err_msg = "computed proposal boxes = {}, expected {}".format( | |
proposal.proposal_boxes.tensor, expected_proposal_box.tensor | |
) | |
self.assertTrue( | |
torch.allclose( | |
proposal.proposal_boxes.tensor, expected_proposal_box.tensor, atol=1e-5 | |
), | |
err_msg, | |
) | |
err_msg = "computed objectness logits = {}, expected {}".format( | |
proposal.objectness_logits, expected_objectness_logit | |
) | |
self.assertTrue( | |
torch.allclose(proposal.objectness_logits, expected_objectness_logit, atol=1e-5), | |
err_msg, | |
) | |
def test_rpn_proposals_inf(self): | |
N, Hi, Wi, A = 3, 3, 3, 3 | |
proposals = [torch.rand(N, Hi * Wi * A, 4)] | |
pred_logits = [torch.rand(N, Hi * Wi * A)] | |
pred_logits[0][1][3:5].fill_(float("inf")) | |
images = ImageList.from_tensors([torch.rand(3, 10, 10)] * 3) | |
find_top_rpn_proposals(proposals, pred_logits, images, 0.5, 1000, 1000, 0, False) | |
if __name__ == "__main__": | |
unittest.main() | |