Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, json, re
|
| 2 |
+
from typing import List, Tuple
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import faiss
|
| 7 |
+
from sentence_transformers import SentenceTransformer
|
| 8 |
+
|
| 9 |
+
# ---------- Paths (expects files committed under ./assets) ----------
|
| 10 |
+
APP_DIR = os.path.dirname(__file__)
|
| 11 |
+
ASSETS_DIR = os.path.join(APP_DIR, "assets")
|
| 12 |
+
CACHE_DIR = "/mnt/data/eg_space_cache" # runtime cache
|
| 13 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
| 14 |
+
|
| 15 |
+
CORPUS_JSON = os.path.join(ASSETS_DIR, "corpus.json")
|
| 16 |
+
EMB_FP32 = os.path.join(ASSETS_DIR, "doc_embs_fp32.npy")
|
| 17 |
+
EMB_FP16 = os.path.join(ASSETS_DIR, "doc_embs_fp16.npy")
|
| 18 |
+
FAISS_MAIN = os.path.join(ASSETS_DIR, "faiss_ip_768.index")
|
| 19 |
+
|
| 20 |
+
# ---------- Matryoshka dims ----------
|
| 21 |
+
MATRYOSHKA_DIMS = [768, 512, 256, 128]
|
| 22 |
+
DEFAULT_DIMS = 768
|
| 23 |
+
|
| 24 |
+
# ---------- Load corpus ----------
|
| 25 |
+
with open(CORPUS_JSON, "r", encoding="utf-8") as f:
|
| 26 |
+
corpus = json.load(f) # list of {"title","text"} in EXACT same order as embeddings
|
| 27 |
+
|
| 28 |
+
# ---------- Load embeddings ----------
|
| 29 |
+
if os.path.exists(EMB_FP32):
|
| 30 |
+
doc_embs = np.load(EMB_FP32).astype(np.float32, copy=False)
|
| 31 |
+
elif os.path.exists(EMB_FP16):
|
| 32 |
+
doc_embs = np.load(EMB_FP16).astype(np.float32) # cast back for FAISS
|
| 33 |
+
else:
|
| 34 |
+
raise FileNotFoundError("Expected assets/doc_embs_fp32.npy or assets/doc_embs_fp16.npy")
|
| 35 |
+
|
| 36 |
+
if doc_embs.ndim != 2 or doc_embs.shape[0] != len(corpus):
|
| 37 |
+
raise ValueError("Embeddings shape mismatch vs corpus length.")
|
| 38 |
+
|
| 39 |
+
EMB_DIM = doc_embs.shape[1] # should be 768
|
| 40 |
+
|
| 41 |
+
# ---------- Model (for queries + sentence-level ops) ----------
|
| 42 |
+
model = SentenceTransformer("google/embeddinggemma-300m") # CPU is fine for queries
|
| 43 |
+
|
| 44 |
+
# ---------- FAISS indexes ----------
|
| 45 |
+
# Option A: load a ready-made 768-dim index if provided
|
| 46 |
+
if os.path.exists(FAISS_MAIN):
|
| 47 |
+
base_index_768 = faiss.read_index(FAISS_MAIN)
|
| 48 |
+
else:
|
| 49 |
+
base_index_768 = faiss.IndexFlatIP(EMB_DIM)
|
| 50 |
+
base_index_768.add(doc_embs.astype(np.float32, copy=False))
|
| 51 |
+
|
| 52 |
+
# Build per-dimension flat IP indexes from the loaded embeddings
|
| 53 |
+
class MultiDimFaiss:
|
| 54 |
+
def __init__(self, doc_embs_full: np.ndarray):
|
| 55 |
+
self.full = doc_embs_full
|
| 56 |
+
self.indexes = {}
|
| 57 |
+
for d in MATRYOSHKA_DIMS:
|
| 58 |
+
if d == 768 and FAISS_MAIN and os.path.exists(FAISS_MAIN):
|
| 59 |
+
self.indexes[d] = base_index_768
|
| 60 |
+
else:
|
| 61 |
+
view = self.full[:, :d].astype(np.float32, copy=False)
|
| 62 |
+
idx = faiss.IndexFlatIP(d)
|
| 63 |
+
idx.add(view)
|
| 64 |
+
self.indexes[d] = idx
|
| 65 |
+
|
| 66 |
+
def search(self, q_vec: np.ndarray, top_k: int, dims: int) -> Tuple[np.ndarray, np.ndarray]:
|
| 67 |
+
q = q_vec[:dims].astype(np.float32, copy=False)[None, :]
|
| 68 |
+
idx = self.indexes[dims]
|
| 69 |
+
return idx.search(q, top_k)
|
| 70 |
+
|
| 71 |
+
faiss_md = MultiDimFaiss(doc_embs)
|
| 72 |
+
|
| 73 |
+
# ---------- Core ops ----------
|
| 74 |
+
def _format_snippet(text: str, max_len: int = 380) -> str:
|
| 75 |
+
return text[:max_len] + ("…" if len(text) > max_len else "")
|
| 76 |
+
|
| 77 |
+
def do_search(query: str, top_k: int = 5, dims: int = DEFAULT_DIMS) -> List[List[str]]:
|
| 78 |
+
if not query or not query.strip():
|
| 79 |
+
return []
|
| 80 |
+
q_emb = model.encode_query(
|
| 81 |
+
query.strip(),
|
| 82 |
+
normalize_embeddings=True,
|
| 83 |
+
convert_to_numpy=True
|
| 84 |
+
)
|
| 85 |
+
scores, idxs = faiss_md.search(q_emb, top_k=top_k, dims=dims)
|
| 86 |
+
rows = []
|
| 87 |
+
for s, i in zip(scores[0].tolist(), idxs[0].tolist()):
|
| 88 |
+
if i == -1:
|
| 89 |
+
continue
|
| 90 |
+
title = corpus[i]["title"]
|
| 91 |
+
snippet = _format_snippet(corpus[i]["text"])
|
| 92 |
+
rows.append([f"{s:.4f}", title, snippet])
|
| 93 |
+
return rows
|
| 94 |
+
|
| 95 |
+
def do_similarity(text_a: str, text_b: str, dims: int = DEFAULT_DIMS) -> float:
|
| 96 |
+
if not text_a or not text_b:
|
| 97 |
+
return 0.0
|
| 98 |
+
a = model.encode_document([text_a], normalize_embeddings=True, convert_to_numpy=True)[0][:dims]
|
| 99 |
+
b = model.encode_document([text_b], normalize_embeddings=True, convert_to_numpy=True)[0][:dims]
|
| 100 |
+
return float(np.dot(a, b))
|
| 101 |
+
|
| 102 |
+
# Extractive summarization using EmbeddingGemma's Summarization prompt
|
| 103 |
+
def _split_sents(text: str):
|
| 104 |
+
parts = re.split(r"(?<=[\.!?])\s+", text.strip())
|
| 105 |
+
return [p.strip() for p in parts if p.strip()]
|
| 106 |
+
|
| 107 |
+
def summarize_extractive(text: str, n: int, dims: int, lambda_diversity: float = 0.7) -> str:
|
| 108 |
+
sents = _split_sents(text)
|
| 109 |
+
if not sents:
|
| 110 |
+
return ""
|
| 111 |
+
embs = model.encode(
|
| 112 |
+
sents,
|
| 113 |
+
prompt_name="Summarization",
|
| 114 |
+
normalize_embeddings=True,
|
| 115 |
+
convert_to_numpy=True,
|
| 116 |
+
batch_size=128,
|
| 117 |
+
)[:, :dims]
|
| 118 |
+
centroid = embs.mean(axis=0)
|
| 119 |
+
base = embs @ centroid
|
| 120 |
+
|
| 121 |
+
picked = []
|
| 122 |
+
for _ in range(min(n, len(sents))):
|
| 123 |
+
if not picked:
|
| 124 |
+
i = int(np.argmax(base))
|
| 125 |
+
else:
|
| 126 |
+
sim_to_sel = np.max(embs[picked] @ embs.T, axis=0)
|
| 127 |
+
mmr = (1 - lambda_diversity) * base + lambda_diversity * (1 - sim_to_sel)
|
| 128 |
+
i = int(np.argmax(mmr))
|
| 129 |
+
picked.append(i)
|
| 130 |
+
base[i] = -1e9
|
| 131 |
+
# keep original order
|
| 132 |
+
ordered = [s for _, s in sorted(zip(picked, [sents[i] for i in picked]))]
|
| 133 |
+
return " ".join(ordered)
|
| 134 |
+
|
| 135 |
+
# ---------- Gradio UI ----------
|
| 136 |
+
with gr.Blocks(title="EmbeddingGemma × Wikipedia (EN corpus)") as demo:
|
| 137 |
+
gr.Markdown(
|
| 138 |
+
"# EmbeddingGemma × Wikipedia (EN corpus)\n"
|
| 139 |
+
"Search, cross-lingual retrieval (to EN), similarity, and extractive summarization.\n"
|
| 140 |
+
"Model: `google/embeddinggemma-300m` • Docs indexed from `corpus.json` • Precomputed embeddings loaded from assets."
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
with gr.Tabs():
|
| 144 |
+
# 1) Semantic Search (EN-only corpus)
|
| 145 |
+
with gr.TabItem("Semantic Search (EN corpus)"):
|
| 146 |
+
with gr.Row():
|
| 147 |
+
q = gr.Textbox(label="Query", value="Who discovered penicillin?")
|
| 148 |
+
topk = gr.Slider(1, 20, value=5, step=1, label="Top-K")
|
| 149 |
+
dims = gr.Dropdown([str(d) for d in MATRYOSHKA_DIMS], value=str(DEFAULT_DIMS), label="Embedding dims")
|
| 150 |
+
run = gr.Button("Search")
|
| 151 |
+
out = gr.Dataframe(headers=["score", "title", "snippet"], wrap=True)
|
| 152 |
+
run.click(lambda query, k, d: do_search(query, int(k), int(d)), [q, topk, dims], out)
|
| 153 |
+
|
| 154 |
+
# 2) Cross-Lingual (queries in FR/ES/etc → EN corpus)
|
| 155 |
+
with gr.TabItem("Cross-Lingual (EN corpus)"):
|
| 156 |
+
gr.Markdown("Type your query in **French/Spanish/Arabic**. Results come from the **English-only** corpus.")
|
| 157 |
+
with gr.Row():
|
| 158 |
+
qx = gr.Textbox(label="Query", value="¿Quién descubrió la penicilina?")
|
| 159 |
+
topkx = gr.Slider(1, 20, value=5, step=1, label="Top-K")
|
| 160 |
+
dimsx = gr.Dropdown([str(d) for d in MATRYOSHKA_DIMS], value=str(DEFAULT_DIMS), label="Embedding dims")
|
| 161 |
+
runx = gr.Button("Search")
|
| 162 |
+
outx = gr.Dataframe(headers=["score", "title", "snippet"], wrap=True)
|
| 163 |
+
runx.click(lambda query, k, d: do_search(query, int(k), int(d)), [qx, topkx, dimsx], outx)
|
| 164 |
+
|
| 165 |
+
# 3) Similarity
|
| 166 |
+
with gr.TabItem("Similarity"):
|
| 167 |
+
with gr.Row():
|
| 168 |
+
a = gr.Textbox(lines=5, label="Text A", value="Alexander Fleming observed a mold that killed bacteria in 1928.")
|
| 169 |
+
b = gr.Textbox(lines=5, label="Text B", value="La penicilina fue descubierta por Alexander Fleming en 1928.")
|
| 170 |
+
dims2 = gr.Dropdown([str(d) for d in MATRYOSHKA_DIMS], value=str(DEFAULT_DIMS), label="Embedding dims")
|
| 171 |
+
sim_btn = gr.Button("Compute Similarity")
|
| 172 |
+
sim_out = gr.Number(label="Cosine similarity (-1..1)")
|
| 173 |
+
sim_btn.click(lambda x, y, d: do_similarity(x, y, int(d)), [a, b, dims2], sim_out)
|
| 174 |
+
|
| 175 |
+
# 4) Summarization (extractive)
|
| 176 |
+
with gr.TabItem("Summarization"):
|
| 177 |
+
gr.Markdown("**Extractive summarization** using EmbeddingGemma's `Summarization` prompt. Paste any long text.")
|
| 178 |
+
with gr.Row():
|
| 179 |
+
sum_dims = gr.Dropdown([str(d) for d in MATRYOSHKA_DIMS], value=str(DEFAULT_DIMS), label="Embedding dims")
|
| 180 |
+
sum_n = gr.Slider(1, 10, value=5, step=1, label="Sentences in summary")
|
| 181 |
+
sum_text = gr.Textbox(lines=12, label="Text to summarize", value="Paste a Wikipedia article (or any text) here…")
|
| 182 |
+
sum_btn = gr.Button("Summarize")
|
| 183 |
+
sum_out = gr.Textbox(lines=10, label="Summary")
|
| 184 |
+
sum_btn.click(lambda t, n, d: summarize_extractive(t, int(n), int(d)), [sum_text, sum_n, sum_dims], sum_out)
|
| 185 |
+
|
| 186 |
+
if __name__ == "__main__":
|
| 187 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|